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Abstract	
Deep	brain	stimulation	(DBS)	effectively	suppresses	tremors	in	essential	tremor,	
dystonic	tremor,	and	Parkinson’s	disease	patients	when	administered	as	
continuous,	high-frequency	stimulation	in	the	thalamus.	However,	adverse	effects	of	
such	nearly	constant	stimulation,	which	include	speech	and	motor	impairment	and	
high	power	consumption,	motivate	the	search	for	smarter,	more	energy-efficient	
DBS	strategies.	This	dissertation	aims	to	investigate	one	such	strategy	based	on	
recent	research,	which	suggests	that	tremor	suppression	in	essential	tremor	
patients	may	depend	on	the	phase	of	tremor	at	which	low-frequency	stimulation	is	
delivered	(Cagnan	et	al.,	2013).		
	
The	work	presented	in	this	dissertation	attempts	to	demonstrate	an	optimal,	phase-
locked	stimulation	strategy	that	maximally	suppresses	the	tremor	of	a	single	
essential	tremor	patient.	It	also	uses	and	extends	the	Kuramoto	neural	oscillator	
model	(Kuramoto,	1984;	Tass,	2003;	Wilson	and	Moehlis,	2014)	to	show	the	
limitations	such	a	mathematical	model	has	in	explaining	an	optimal,	phasic	
stimulation	strategy	that	is	consistent	with	the	one	demonstrated	in	the	clinical	
setting.	
	
Two	additional	contributions	are	outlined	in	this	dissertation:	First,	building	off	the	
Rayleigh	test	(Mardia,	1975),	a	novel,	parameterized	circular	statistic	to	test	
weighted	circular	uniformity	is	described	and	analysed.	Second,	a	web	simulation	of	
the	proposed	oscillator	model	is	presented	as	both	a	research	tool	and	a	public	
engagement	resource.	
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Introduction		
Tremors	are	a	common,	debilitating	symptom	of	several	motor	disorders.	
Continuous,	high-frequency	deep	brain	stimulation	(DBS)	in	the	thalamus	has	been	
a	highly	effective	treatment	for	suppressing	tremors	in	patients	with	Parkinson’s	
disease,	essential	tremor,	and	dystonic	tremor	(Benabid	et	al.,	1991).	However,	DBS	
also	disrupts	physiological	motor	function	(Chen	et	al.,	2006;	Ray	et	al.,	2009)	and	
can	cause	adverse	effects	like	speech	impairments	and	gait	instability	(Zhang	et	al.,	
2010;	Baizabal-Carvallo	et	al.,	2014).	The	continuous,	energy-consuming	nature	of	
conventional	DBS	has	an	additional	toll	in	requiring	the	replacement	of	DBS	implant	
batteries	every	few	years.	Together,	these	effects	motivate	research	for	a	more	
efficient	DBS	paradigm	that	reaps	the	same	tremor-suppressing	benefits	of	typical	
DBS	yet	stimulate	the	thalamus	sparingly	and	smartly.	
	
While	conventional	DBS	has	some	parameters,	such	as	the	strength	and	frequency	of	
stimulation,	that	can	be	optimally	tuned,	typical,	continuous,	high-frequency	
stimulation	does	not	change	once	parameters	are	set.	Recently,	a	closed-loop	
paradigm	known	as	adaptive	DBS	(aDBS)	only	administers	stimulation	when	a	
threshold	level	of	beta	oscillations	–	neurons	firing	within	the	beta	frequency	range	
of	13-30Hz	–	in	the	basal-ganglia	is	exceeded	(Little	and	Brown,	2012;	Little	et	al.,	
2013,	2015;	Rosa	et	al.,	2015).	High	levels	of	beta	oscillations	in	the	basal-ganglia	
cortical	loop	have	been	linked	to	Parkinsonian	symptoms	such	as	limb	rigidity	and	
bradykinesia,	a	condition	of	slowness	of	movement,	yet	they	have	not	been	
associated	with	tremor	(Hammond	et	al.,	2007).	Thus,	current	aDBS	paradigms	are	
limited	to	treating	non-tremor,	Parkinsonian-specific	symptoms.	
	
Recent	work	suggests	the	potential	for	an	alternative,	tremor-suppressing	aDBS	
paradigm	by	timing	stimulation	to	a	specific	phase	of	tremor,	that	is,	a	particular	
point	in	a	tremor	oscillation.	This	research	shows	a	tremor-suppressing	effect	when	
the	phase	of	low-frequency	DBS	becomes	synchronized	with	the	phase	of	hand	
tremor	in	tremulous	essential	tremor	(Cagnan	et	al.,	2013)	and	Parkinson’s	disease	
patients	(Azodi-Avval	and	Gharabaghi,	2015).	In	such	patients,	tremor	oscillations	
occur	at	around	4-6	Hz,	which	is	also	the	characteristic	oscillation	frequency	in	
certain	basal	ganglia	regions	of	tremulous	patients	(Hirschmann	et	al.,	2013).	It	has	
been	shown	that	thalamic	neural	activity	synchronized	to	tremor	frequency	drives	
the	automatic,	repetitive	movement	(Hua,	2004).	Thus,	it	may	be	plausible	that	
stimulating	the	thalamus	according	to	tremor	phase	may	desynchronize	the	neural	
activity	responsible	for	tremulous	behavior	(Beudel	and	Brown,	2015).	
	
A	computational	model	(Tass,	2003)	describes	how	DBS	can	be	incorporated	into	a	
common	neural	oscillator	model,	the	Kuramoto	model	(Kuramoto,	1984),	to	
simulate	the	synchrony	of	thalamic	neurons	and	the	desynchronizing	effect	of	DBS.	
A	recent	work	proposes	an	optimal,	close-looped	DBS	strategy	that	depends	on	the	
phase	of	an	individual	neuronal	oscillator	(Wilson	and	Moehlis,	2014).	However,	
this	computational	research	has	not	been	used	to	determine	an	optimal,	adaptive	
DBS	strategy	based	on	the	phase	of	tremor.	
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This	dissertation	uses	tremor	data	collected	from	an	experimental	trial	that	times	
the	administration	of	short,	35ms	bursts	of	high-frequency	DBS	to	a	specific	tremor	
phase	of	an	essential	tremor	patient	throughout	a	duration	of	5	seconds	(Cagnan	et	
al.,	2016).	Using	this	experimental	tremor	data,	this	dissertation	demonstrates	that	
tremor	phase-locked	DBS	yields	a	statistically	significant,	phase-dependent	change	
in	tremor	amplitude	and	identifies	an	optimal	range	of	tremor	phases	at	which	
phase-locked	DBS	best	suppresses	tremor	for	this	patient.	This	work	also	presents	
several	extensions	to	the	Kuramoto	model	and	tests	the	extent	to	which	the	model	
can	explain	the	clinical,	phase-dependent	tremor	suppression	observed	in	the	
essential	tremor	patient.	
	
In	summary,	it	is	hoped	that	this	work	will	serve	as	a	stepping	stone	towards	further	
research	in	developing	not	only	a	closed-loop,	tremor	phase-locked	DBS	paradigm	
but	also	a	biologically-plausible	model	to	explain	how	such	stimulation	effectively	
dampens	tremor.		
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Methods	
Experimental	data	collection	was	conducted	by	Dr.	Hayriye	Cagnan	(Cagnan	et	al.,	
2016),	and	the	optimization	of	model	parameters	was	done	by	Dr.	Gihan	
Weerasinghe.	All	other	methods	described	in	this	section	were	designed	and	carried	
out	by	the	author.	
	

Experimental	Data	Collection	
The	experimental	data	analyzed	in	this	dissertation	was	collected	with	the	approval	
of	the	appropriate,	local	ethics	committee	and	with	the	informed	consent	of	all	
patients	(Cagnan	et	al.,	2016).	
	
One	essential	tremor	patient	had	four	DBS	electrodes	inserted	into	their	left	
ventralateral	thalamus;	placement	of	electrodes	was	confirmed	using	CT	and	MRI	
imaging	after	the	operation.	An	accelerometer	with	three	axes	was	attached	to	the	
index	finger	of	the	patient’s	right	hand.	Minimal,	online	processing	was	conducted	
on	the	accelerator	axis	with	the	most	tremor.	With	a	sampling	rate	of	10,417	Hz,	this	
slightly	processed	signal	from	the	dominant	tremor	axis	is	used	and	analyzed	
throughout	this	dissertation.	
	
The	tremors	of	the	essential	tremor	patient	were	recorded	when	phase-locked,	
35ms	bursts	of	130Hz	DBS	were	administered	throughout	a	5-second	block	(Figure	
1).	Stimulation	was	phase-locked	to	tremor,	which	was	measured	by	the	hand-
mounted	accelerometer.	Given	a	phase	𝜃	for	a	block,	whenever	the	tremor	
oscillation	passed	phase	𝜃,	a	35ms	burst	of	130Hz	DBS	was	administered	(Figure	3).	
9	blocks	were	recorded	for	each	of	the	following	12	phases:	0°,	30°,	60°,	90°,	120°,	
150°,	180°,	210°,	240°,	270°,	300°,	330°	(with	the	exception	of	the	180°	phase,	for	
which	only	8	blocks	were	successfully	recorded).	There	was	at	least	1	second	of	no	
stimulation	between	blocks.	
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Figure	1:	An	Experimental	Block	with	Phasic	Stimulation	at	phase	240°		

(1st	 row)	 The	 unfiltered	 tremor	 acceleration	 signal	 (m/s2)	was	 recorded	 by	 a	 single	 hand-
mounted	accelerometer.	(2nd	row)	The	tremor	signal	from	the	1st	row	was	band-pass	filtered	
between	3Hz	and	6Hz;	the	tremor	amplitude	(m/s2)	is	traced	in	orange	and	was	derived	from	
the	analytical	signal.	(3rd	row)	The	instantaneous	frequency	(Hz)	of	the	tremor	amplitude	was	
also	 derived	 from	 the	 analytical	 signal.	 (4th	 row)	 35	 ms	 bursts	 of	 130	 Hz,	 phase-locked	
stimulation	were	applied	whenever	the	tremor	amplitude	passed	the	240°	phase.	

	
Tremors	were	recorded	in	9	batches	(Figure	2).	In	each	batch,	12	blocks	were	
recorded,	one	for	each	of	the	12	phases.	To	mitigate	the	effect	a	particular	order	of	
phasic	stimulation	blocks	may	have,	the	order	of	phase	blocks	was	randomly	
permuted	for	each	batch.		
	
In	between	batches,	the	patient	rested	their	hands	from	the	extended,	elevated	hand	
position	maintained	during	the	batches,	resulting	in	negligible	tremor	amplitude	
being	recorded	(Figure	2,	see	filtered	amplitude	signal	during	t	=	1000-1200	
seconds).	These	rest	periods	explain	the	noisy	instantaneous	frequency	calculated	in	
between	batches.	
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Figure	2:	Experimental	Data	for	Whole	Trial		

(1st	 row)	 The	 unfiltered	 tremor	 signal	 (m/s2)	 was	 recorded	 by	 a	 single	 hand-mounted	
accelerometer.	(2nd	row)	The	unfiltered	tremor	signal	was	band-pass	filtered	between	3Hz	and	
6Hz;	the	tremor	amplitude	is	traced	in	orange.	(3rd	row)	The	instantaneous	frequency	(Hz)	of	
the	filtered	tremor	amplitude	was	derived.	(4th	row)	The	phase	(degrees)	of	stimulation	was	
set	a	priori	via	a	random	permutation	for	each	batch.	(5th	row)	35	ms	bursts	of	130	Hz,	phase-
locked	stimulation	were	applied	whenever	the	tremor	amplitude	passed	the	phase	for	a	given	
block;	phase	of	tremor	was	calculated	online	throughout	the	trial	from	the	filtered	amplitude.	

	
During	the	experiment,	to	calculate	the	phase	of	the	tremor,	the	signal	from	the	
dominant	tremor	axis	of	the	unfiltered	tremor	was	band-pass	filtered	online	to	
±2Hz	around	the	tremor	frequency.	Then,	the	tremor	cycle’s	phase	was	estimated	
from	the	tremor	frequency	and	the	previous	cycle’s	zero	crossing	of	the	online,	
filtered	signal.	When	the	target	phase	was	detected	from	the	online,	filtered	signal,	
DBS	is	administered	at	130	Hz	for	35	milliseconds;	this	corresponds	to	the	delivery	
of	6	pulses	(Figure	3).	Because	the	filtered	signal	was	calculated	online,	it	was	
shifted	in	time	and	resulted	in	a	phase	shift.	This	shift	was	corrected	for	in	the	
subsequent	data	processing	and	analysis	as	well	as	all	presented	figures.	
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Figure	3:	First	second	of	an	Experimental	Block	with	Phase-locked	Stimulation	at	240°		

(1st	 row)	 The	 unfiltered	 tremor	 signal	 (m/s2)	 was	 recorded	 by	 a	 single	 hand-mounted	
accelerometer.	(2nd	row)	The	unfiltered	tremor	signal	was	band-pass	filtered	between	3Hz	and	
6Hz;	 the	 tremor	amplitude	(m/s2)	 is	 traced	 in	orange.	 (3rd	row)	The	phase	(degrees)	of	 the	
tremor	was	calculated	online	from	the	filtered	tremor	throughout	the	whole	trial.	(4th	row)	A	
35	ms	burst	of	130	Hz	stimulation,	resulting	in	6	pulses,	was	applied	every	time	the	tremor	
amplitude	passed	phase	240°.	

	

Experimental	Data	Processing	
All	data	processing	and	analysis	was	conducted	using	custom	MATLAB	code.		
	
The	tremor	signal,	with	an	original	sampling	rate	10,417	Hz,	was	resampled	at	1000	
Hz.	The	resampled	signal	was	then	band-pass	filtered	between	3	Hz	and	6	Hz	using	
the	second-order	Butterworth	filter	(Butterworth,	1930).	The	resampled	and	
filtered	signal	is	used	in	all	analyses	unless	otherwise	mentioned.	
	
The	tremor	amplitude	(Equation	2)	was	calculated	by	taking	the	complex	magnitude	
of	the	analytic	signal	(Equation	1)	of	the	filtered	tremor	signal.	
	

𝐴(𝑡) = 𝑓(𝑡) + 	𝑖𝐻[𝑓 𝑡 ]	
Equation	1:	Analytic	Signal	of	Filtered	Tremor	Signal	

The	analytical	signal	of	the	tremor	consists	of	the	original	signal	of	the	filtered	tremor,	𝑓(𝑡),	
and	the	Hilbert	transform	of	the	original	signal,	𝐻[𝑓(𝑡)].	
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𝑎(𝑡) = 𝑓(𝑡)9 + 𝐻[𝑓 𝑡 ]9		

Equation	2:	Tremor	Amplitude	from	Analytical	Signal	(Equation	1)	

	
The	instantaneous	frequency	was	calculated	by	smoothing	the	derivative	of	the	
filtered	tremor	signal.	First,	the	difference	between	each	1	millisecond	time	step	of	
the	tremor	amplitude	was	calculated;	this	difference	vector	was	then	smoothed.	
Finally,	the	instantaneous	frequency,	𝑓(𝑡),	was	calculated	by	scaling	the	smoothed	
difference	vector,	𝑑(𝑡),	by	the	sampling	rate,	r	=	1000	Hz,	and	by	1/(2𝜋)	to	reflect	
the	derivative	of	the	filtered	tremor	signal	(Equation	3).	
	

𝑓(𝑡) =
𝑟𝑑(𝑡)
2𝜋 	

Equation	3:	Instantaneous	Frequency	

	
The	frequency	of	a	time	period	can	also	be	calculated	by	counting	the	number	of	
zero	crossings	of	the	filtered	tremor	signal.	The	results	reported	in	this	work	use	
instantaneous	frequency;	however,	some	additional	results	included	in	Appendix	1	
used	frequency	calculated	via	the	zero-crossings	method.	Qualitatively,	results	
obtained	using	the	two	different	methods	for	calculating	frequency	were	similar.	
	

Experimental	Data	Analysis	
For	each	block,	measures	of	the	change	in	tremor	amplitude,	frequency,	and	phase	
respectively	were	calculated	in	order	to	analyze	the	effects	of	phase-locked	DBS.	The	
main	metrics	are	described	below;	however,	additional	metrics	were	developed	and	
are	included	in	Appendix	1.	
	

Calculating	Change	in	Amplitude	and	in	Frequency	
The	same	metric	was	used	to	calculate	change	in	amplitude	and	change	in	frequency	
(Equation	4).	Let	𝑔> 𝑥, 𝑦 ,	where	𝑥, 𝑦 ∈ −1,5 	seconds,	denote	the	median	of	the	
tremor	amplitude	between	𝑡 = 𝑥	seconds	and	𝑡 = 𝑦	seconds	in	a	block.	
Correspondingly,	let	𝑔O 𝑥, 𝑦 	denote	the	median	of	the	instantaneous	frequency.	
Then,	for	a	given	5	second	block,	the	difference	between	the	median	of	the	
amplitude	(or	instantaneous	frequency)	of	the	last	second	of	the	block,	𝑔P 4,5 ,	and	
that	of	the	preceding	one	second	period	of	no	stimulation,	𝑔P −1,0 ,	was	calculated,	
where	𝑚 ∈ 𝑎, 𝑓 	denote	amplitude	or	instantaneous	frequency.	
	

∆𝑚 =	𝑔P 4,5 − 𝑔P(−1,0)	
Equation	4:	Metric	for	Change	in	Amplitude	and	in	Frequency	
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Figure	4:	Epochs	Used	to	Calculate	Metric	for	Change	in	Amplitude	and	Frequency	

The	medians	of	the	filtered	amplitude	(1st	row,	in	orange)	and	of	the	instantaneous	frequency	
(2nd	row)	from	4s-5s	of	a	block	(epoch	bounded	in	orange)	and	are	compared	to	that	from	-1s	
to	 0s	 (epoch	bounded	 in	 blue),	 during	which	 there	 is	 no	 stimulation	 to	 compute	 change	 in	
amplitude	and	in	frequency.	

	
For	change	in	amplitude	and	frequency,	this	metric	was	calculated	for	each	of	the	
107	blocks	and	plotted	in	Figure	10,	1st	and	2nd	rows,	with	the	median	of	each	phase	
plotted	as	well.	
	

Calculating	the	Phase	Response	Curve	(PRC)	
Let	𝑔O 𝑥, 𝑦 	be	the	median	function	𝑔	defined	in	the	previous	section	for	
instantaneous	frequency.	To	calculate	the	change	in	phase,	a	reference	frequency,	𝑓U ,	
was	calculated	by	taking	the	median	instantaneous	frequency	of	the	preceding	one	
second	period	of	no	stimulation,	i.e.		𝑓U = 𝑔O −1,0 .	Then,	for	𝑡 = 0	seconds	to	𝑡 = 5	
of	a	given	experimental	block,	the	unwrapped	phase,	𝜃>(𝑡),	in	radians,	of	the	filtered	
tremor	signal,	𝑓(𝑡),	was	calculated.		
	

𝜃> 𝑡 = unwrap[atan2(	
𝐻[𝑓 𝑡 ]
𝑓(𝑡) 	)]	

Equation	5:	Actual,	Unwrapped	Phase	of	Experimental	Block	

From	Equation	1,	𝐻[𝑓 𝑡 ]	is	the	imaginary	component	of	the	analytic	signal,	computing	using	
the	 Hilbert	 transform,	 of	 the	 filtered	 tremor	 signal,	𝑓(𝑡) .	 The	 MATLAB	 unwrap	 function	
corrects	 for	phase	 jumps	by	adding	360°	when	phase	 jumps	 from	359°	 to	0°.	The	MATLAB	
atan2	function	was	used	instead	of	inverse	tan	function,	tan-1,	in	order	to	handle	discontinuities	
at	90°	and	at	270°.	

	
Then,	accounting	for	the	starting	phase	of	the	block,	𝜃> 0 ,	in	radians,	the	reference	
unwrapped	phase	was	calculated	by	projecting	the	reference	frequency	(Equation	
6).		
	

𝜃U 𝑡 = 𝜃> 0 + 2𝜋𝑡𝑓U 	
Equation	6:	Reference,	Unwrapped	Phase	of	Experimental	Block	
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The	equation	for	reference	phase	(Equation	6)	corresponds	to	the	first-order	Taylor	
approximation	around	the	neighborhood	of	t	=	0	of	the	actual,	unwrapped	phase	
(Equation	7).	This	is	because	the	derivative	of	phase	is	instantaneous	frequency	
scaled	by	2𝜋,	as	one	complete	oscillation	cycle	is	equivalent	to	travelling	2𝜋	or	360°.	
Thus,	𝜃>′ 0 	is	approximated	by	2𝜋𝑓U .	
	

𝑃\ 𝑡 = 𝜃> 0 + 𝜃>′(0)𝑡	
Equation	7:	1st-Order	Taylor	Approximation	of	Phase	Around	t	=	0	

	
This	first-order	approximation	sufficed,	as	the	second	derivative	of	phase	was	
nearly	always	0;	thus,	further	order	approximations	(Equation	8)	did	not	
significantly	differ	from	the	first-order	approximation.	
	

𝑃] 𝑡 = (
𝜃>
^ 0
𝑖! 𝑡^)

]

^`a

	

Equation	8:	kth-Order	Taylor	Approximation	of	Phase	Around	t	=	0	

	
The	time-evolution	of	the	actual	phase	can	also	be	approximated	using	a	first-order	
Taylor	expansion,	which	uses	a	different	frequency,	𝑓> ,	that	reflects	the	actual	
frequency	as	a	result	of	the	current	block’s	phase-locked	stimulation	(Equation	9).	
	

𝜃> 𝑡 ≈ 𝜃> 0 + 2𝜋𝑡𝑓>	
Equation	9:	1st-Order	Taylor	Approximation	of	Actual,	Unwrapped	Phase	of	Experimental	Block	

	
Then,	after	solving	for	𝑓>	in	the	equation	for	the	approximation	of	𝜃> 5 	(Equation	
10),	which	corresponds	to	the	frequency	at	the	end	of	the	5-second	phase-locked	
stimulation	block,	the	metric	for	change	in	phase	can	be	calculated	as	the	difference	
in	degrees	between	the	actual	frequency	and	reference	frequency	(Equation	11a).	
Note	that	the	approximation	of	𝑓>	is	the	unwrapped	phase	of	the	block	normalized	
by	time,	i.e.	5	seconds,	and	the	length	of	a	cycle,	i.e	2𝜋	(Equation	10).	
	

𝑓> ≈
𝜃> 5 −	𝜃> 0

2𝜋(5) 	
Equation	10:	Approximation	of	Frequency	as	a	Result	of	5-second	Phase-Lock	Stimulation	

	
∆𝜃 = 360°(𝑓> − 𝑓U)	

	

∆𝜃 = 360°
𝜃> 5 − 𝜃U 5

10𝜋 	

≈ (360°)	
𝜃> 0 + 2𝜋(5)𝑓> − (𝜃> 0 + 2𝜋 5 𝑓U)

10𝜋 = 360°(𝑓> − 𝑓U)	
Equation	11a-b:	Metric	for	Change	in	Phase	
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Alternatively,	the	metric	for	change	in	phase	can	be	calculated	as	the	difference	in	
degrees	between	the	unwrapped	actual	phase	and	unwrapped	reference	phase	
(Equation	11b,	Figure	5).	
	

	
Figure	5:	Unwrapped	Phase	of	the	Tremor	Amplitude	for	an	Experimental	Block	

The	actual	and	real	unwrapped	phases	(θa	and	θr	respectively,	in	radians)	are	plotted	for	an	
experimental	block	in	which	240°	phase-locked	stimulation	was	administered.	The	difference	
between	the	actual	and	real	unwrapped	phases	at	t	=	5	seconds	was	used	to	calculate	the	

change	in	phase	(Equation	11).	
	
For	change	in	phase,	this	metric	was	calculated	for	each	of	the	107	blocks	and	
plotted	in	Figure	10,	3rd	row,	with	the	median	of	each	phase	plotted	as	well.		
	

Similarity	between	Change	in	Frequency	and	Change	in	Phase	
Note	that	the	change	in	phase	metric	is	simply	another	way	to	calculate	change	in	
frequency.	Both	use	the	same	reference	frequency,	𝑓U = 𝑔O −1,0 ,	that	is	the	
median,	instantaneous	frequency	of	the	second	preceding	the	block	in	which	no	DBS	
was	administered.	The	only	differences	between	the	metrics	are	their	units	–	change	
in	frequency	is	given	in	Hz	while	change	in	phase	is	given	in	degrees	–	and	the	way	
they	compute	the	“actual”	frequency	as	a	result	of	phase-locked	DBS	for	a	given	
block.	The	change	in	frequency	metric	approximates	the	“actual”	frequency	by	
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computing	the	median,	instantaneous	frequency	of	the	last	second	of	a	given	block,	
i.e.	𝑔O 4,5 	(Equation	4),	while	the	change	in	phase	metric	approximates	the	“actual”	
frequency	using	the	unwrapped	phase	of	a	given	block	(Equation	10).	Table	2	shows	
the	strong	correlation	strength	between	the	change	in	frequency	and	change	in	
phase	metrics.	Thus,	the	two	metrics	are	approximations	of	the	same	measure.	

Significance	Testing	using	Circular	Statistics	
In	order	to	test	whether	there	was	a	significant	effect	in	the	change	in	amplitude,	
frequency,	and	phase,	circular	statistics	tests	were	used.	In	this	section,	an	
explanation	of	the	relevant	statistics	–	including	the	presentation	of	a	novel,	
weighted,	parametric	circular	test	–	will	first	be	presented,	followed	by	a	description	
of	how	they	were	used	to	test	significance	in	the	experimental	data.	
	

Rayleigh	Statistic	
	

	
	

Figure	6:	Example	Phases	Plotted	Along	Unit	Circle	

The	Rayleigh	circular	statistic,	𝑧U ,	is	a	non-parametric	metric	used	to	test	whether	a	
set	of	phases	is	significantly	non-uniform	(Mardia,	1975).	The	Rayleigh	statistic	
computes	the	mean	vector	of	all	phases	plotted	along	the	unit	circle	(Figure	6),	
where	R	is	the	result	vector’s	magnitude	and	(X,	Y)	is	its	Cartesian	coordinate;	the	
statistic	𝑧U 	is	the	square	of	the	radius,	R,	scaled	by	the	number	of	phases,	N	
(Equation	12).	This	statistic	fails	on	equally	spaced	out	n-modal	data,	such	as	
diametrically	bimodal	data	with	clusters	at	0°	and	180°	or	trimodal	data	with	
clusters	at		0°,	120°,	or	240°,	as	the	equally-spaced	clusters	would	cancel	each	other	
out.		
	

𝑋 =
1
𝑁 cos 𝜃i

j

i`\

, 𝑌 =
1
𝑁 sin 𝜃i

j

i`\

		

𝑅9 = 𝑋9 + 𝑌9	
𝑧U = 𝑁𝑅9	

Equation	12a-c:	Rayleigh	Statistic	

𝜃 
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A	computed	Rayleigh	statistic	can	then	be	compared	against	a	p-value	table	indexed	
by	the	number	of	elements,	N	(Zar,	2010).	Alternatively,	a	null	distribution	can	be	
generated	by	repeatedly	uniformly	sampling	N	phases	to	form	a	set	of	phases	and	
computing	the	Rayleigh	statistic	on	such	randomly	generated	sets.	Then,	an	
empirical	cumulative	distribution	function	(CDF)	can	be	computed	on	the	null	
distribution	by	simply	ordering	its	Rayleigh	statistics	and	a	threshold	z	value	can	be	
found	for	a	particular	p-value.	This	is	the	procedure	by	which	the	standard	p-value	
table	for	the	Rayleigh	statistic	was	generated	(Zar,	2010).	
	

Moore-Rayleigh	Statistic	
However,	the	Rayleigh	statistic	fails	to	weight	phases.	Because	the	phases	are	
plotted	along	the	unit	circle,	they	all	assume	a	radius	or	weight	of	1.	In	order	to	test	
the	significance	of	the	change	in	amplitude,	frequency,	and	phase	of	experimental	
data,	a	weighted	circular	statistic	is	required,	where	the	radius	of	each	data	point	
corresponds	to	one	of	the	above	metrics	and	its	phase	is	that	data	point’s	
corresponding	phase	(Figure	7).			

	

	
Figure	7:	Example	Phases	with	Different	Radii	or	Weights	

A	non-parametric	extension	of	the	Rayleigh	statistic,	the	Moore-Rayleigh	statistic,	
𝑧P,	weights	phases	by	the	rank	order	of	their	radii	(Moore,	1980).	Given	a	set	of	
polar	coordinates,	 𝜃i, 𝑟i 	 	𝑛 = 1…𝑁},	the	phases	are	reordered	in	ascending	
order	by	their	radii:	(𝜃(\), 𝜃(9), … , 𝜃(j)).	Then,	the	Moore-Rayleigh	test	uses	only	the	
ordered	phases	to	weight	them	by	their	rank-order	when	calculating	the	resultant	
vector.	This	results	in	the	phase	of	the	largest	radius	getting	a	weight	of	N	while	the	
phase	of	the	smallest	radius	gets	a	weight	of	1.	Finally,	the	resultant	vector’s	radius	
is	then	scaled	by	the	inverse	of	the	1.5	power	of	the	size	of	the	set,	N	(Equation	13).		
	

𝑋 = 𝑛 cos 𝜃(i)

j

i`\

, 𝑌 = 𝑛 sin 𝜃(i)

j

i`\

		

𝑅9 = 𝑋9 + 𝑌9	

(𝜃, 𝑟) 
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𝑍 =
𝑅

𝑁r/9	
Equation	13a-c:	Moore-Rayleigh	Statistic	

Similar	to	the	Rayleigh	statistic,	a	computed	Moore-Rayleigh	statistic	can	then	be	
compared	against	a	standard	p-value	table	indexed	by	the	number	of	elements,	N	
(Moore,	1980).	The	standard	p-value	table	for	the	Moore-Rayleigh	statistic	was	
generated	with	a	similar	procedure	as	that	for	the	Rayleigh	statistic,	by	uniformly	
sampling	phases	and	radiuses	to	generate	a	null	distribution.	Alternatively,	a	
permutation	test	can	be	used	to	generate	the	null	distribution	by	repeatedly	
shuffling	the	order	of	the	dataset’s	phases	and	computing	the	Moore-Rayleigh	
statistic	on	each	permutation.	Then,	an	empirical	CDF	of	the	null	distribution	can	be	
used	to	find	threshold	z	values	for	p-values.		
	

Scaled	Rayleigh	Statistic	
In	the	process	of	conducting	the	research	described	in	this	work,	a	parametric,	
scaled	Rayleigh	statistic,	𝑧t,	was	derived.	To	the	best	of	the	author’s	knowledge,	this	
is	the	first	parametric,	weighted	circular	test	based	on	the	Rayleigh	statistic.		
	
The	scaled	Rayleigh	test	weights	each	phase	𝜃i	by	a	corresponding	radius	𝑟i	when	
calculating	the	resultant	vector;	the	square	of	the	result	vector’s	radius	is	then	
scaled	by	the	inverse	of	the	size	of	the	set,	N	(Equation	14).		
	

𝑋 = 𝑟i cos 𝜃i

j

i`\

, 𝑌 = 𝑟i sin 𝜃i

j

i`\

		

𝑅9 = 𝑋9 + 𝑌9	

𝑧t =
𝑅9

𝑁 	
	 	 Equation	14a-c:	Scaled	Rayleigh	Statistic	

	
Because	the	set	of	phases	is	parameterized	by	corresponding	radii,	a	permutation	
test	is	the	most	appropriate	test	to	compute	p-values.	A	null	distribution	can	be	
generated	by	repeatedly	shuffling	the	set	of	N	phases,	randomly	pairing	them	with	a	
shuffled	set	of	the	N	radii,	and	computing	the	scaled	Rayleigh	statistic	on	shuffled	
sets.	Then,	threshold	z	values	can	be	found	for	p-values	from	the	empirical	CDF	of	
the	scaled	Rayleigh	statistics	of	the	null	distribution.	
	
Alternatively,	a	null	distribution	could	be	generated	by	sampling	from	well-known	
statistical	distributions,	such	as	the	uniform	distribution	for	phases	and	the	Normal	
distribution	for	radii,	but	moment	parameters	such	as	mean	and	variance	would	
need	to	be	fit	to	the	dataset’s	radii	in	order	for	the	null	distribution’s	sampled	radii	
to	be	reasonable.	This	dependency	on	the	dataset	makes	the	scaled	Rayleigh	statistic	
parametric.	
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Comparison	of	Weighted,	Circular	Statistics	
Historically,	non-parametric	tests	were	preferable	because	a	standard	p-value	table	
could	be	computed	and	used	without	regard	to	the	specific	dataset	being	tested.	
Given	that	computing	power	was	much	more	limited	just	a	few	decades	ago,	
eliminating	the	need	to	generate	a	null	distribution	was	highly	appealing.	This	was	
the	motivation	behind	the	development	of	the	non-parametric	Moore-Raleigh	test.	
However,	generating	a	null	distribution	today	is	now	a	negligible	concern	on	most	
modern	computers.	Thus,	more	precise	and	powerful	tests	are	now	more	preferable	
than	ones	that	historically	required	less	computational	power.	
	
In	contrast	to	the	Moore-Rayleigh	test,	the	scaled	Rayleigh	test	proportionally	
weights	data	points	by	the	magnitude	of	their	radii.	The	Moore-Rayleigh	test	can	
inaccurately	suggest	a	significant	effect	in	a	dataset,	when	the	differences	among	the	
dataset’s	radii	are	negligibly	small	yet	are	not	captured	in	the	non-parametric	
statistic.	In	this	case,	the	dataset’s	phases	are	scaled	by	the	rank	order	of	their	
corresponding	radii,	which	do	not	accurately	reflect	the	magnitude	of	the	radii	and	
thus	arguably	leads	to	an	inaccurate	weighting.	
	
Depending	on	the	dataset,	exactly	what	kind	of	effect	is	being	tested,	and	whether	
diametric	phases	are	related	to	each	other,	radii	may	or	may	not	want	to	be	
restricted	to	the	set	of	positive	real	numbers	for	the	scaled	Rayleigh	test.		
	
Further	analysis	on	the	strengths	and	limitations	of	the	proposed	scaled	Rayleigh	
test	was	outside	the	scope	of	this	project	but	may	be	an	interesting	and	promising	
direction	for	future	work.	
	
The	primary	MATLAB	resource	for	circular	statistics	did	not	include	weighted	
circular	statistics	tests	(Berens,	2012).	The	MATLAB	implementations	of	the	Moore-
Rayleigh	statistic	and	the	scaled	Rayleigh	statistic	used	in	this	work	were	optimized	
and	made	available	for	public	use	(Fong,	2016a).	
	

Significance	Testing	in	Change	of	Amplitude,	Frequency,	and	Phase	
For	𝑛	 ∈ 1,… ,𝑁 ,	where	N	=	107	blocks,	let	𝜃i	denote	the	phase	at	which	phase-
locked	stimulation	was	administered	during	the	n-th	experimental	block	and	let	
∆𝑎i, ∆𝑓i,	and	∆𝜃i	denote	the	respective	change	in	amplitude,	in	frequency,	and	in	
phase	metrics	for	the	n-th	block.	Then,	for	each	metric,	both	the	Moore-Rayleigh	
statistic	and	the	scaled	Rayleigh	statistic	were	computed,	where	z-scores	(Equation	
15)	of	the	metric	values,	i.e.	{∆𝑚i|	𝑛 = 1,… ,𝑁},	where	𝑚	 ∈ {𝑎, 𝑓, 𝜃},	were	used	as	
radii	for	the	weighted	tests.	Permutation	tests	as	described	above	were	used	to	
generate	null	distributions	against	which	threshold	z	values	and	p-values	could	be	
evaluated.	
	

𝑧 =
𝑥 − 𝜇
𝜎 	

	 	 Equation	15:	Z-Score	
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For	the	scaled	Rayleigh	test,	both	radii	that	include	negative	values	and	radii	shifted	
so	that	all	radii	are	positive	were	used.	There	was	no	palpable	difference	in	results,	
so	the	significance	tests	reported	in	the	Results	section	(Figure	11,	Table	1)	and	in	
Appendix	1	directly	use	metric	values,	some	of	which	are	negative,	as	radii.	
	

Kuramoto	Model	
A	population	of	neurons	can	be	represented	as	a	set	of	oscillators.	The	Kuramoto	
model	(Kuramoto,	1984)	is	one	such	neuronal	oscillator	model	and	has	been	
extended	to	capture	the	effects	of	deep	brain	stimulation	on	highly	synchronized	
thalamic	neuronal	populations,	like	those	of	essential	tremor	and	Parkinson’s	
disease	patients	(Tass,	2003).	In	this	section,	the	model	will	first	be	explained;	
subsequently,	the	use	of	the	model	in	this	project	will	be	outlined.	
	
Tass’	Kuramoto	model	captures	four	neuronal	qualities	–	that	they	fire	1.	regularly,	
2.	synchronously,	3.	noisily,	and	4.	responsibly	(to	DBS).	Let	𝜃^ 	denote	the	phase	of	
the	i-th	oscillator	in	a	simulation	of	the	model.	Then,	Equation	16	shows	the	update	
rule	for	the	phase	of	a	single	oscillator,	with	the	last	four	terms	corresponding	to	the	
four	aforementioned	qualities.	

	
𝜃^ ← 𝜃^ + 𝑑𝑡 𝜔^ + 𝐾𝑟 sin 𝜓 − 𝜃^ + 𝛼𝒩 0, 𝑑𝑡 + 𝛽𝑧 𝜃^ 𝑢^ 𝑡 	

Equation	16:	Update	Rule	for	Extended	Kuramoto	Model	

	
With	such	a	framework,	a	neuron	is	assumed	to	spike	regularly	at	a	given	frequency,	
𝜔^;	a	spike	is	then	modelled	as	the	completion	of	a	cycle	by	an	oscillator,	where	the	
time	the	oscillator	takes	to	complete	each	cycle	is	given	by	the	inverse	of	its	
frequency,	i.e.	its	period.	Figure	8	visualizes	a	population	of	10	oscillators	orbiting	
clockwise;	in	this	visualization,	one	can	assume	that	an	oscillator	spikes	when	it	
crosses	the	0°	mark.	
	

	
Figure	8:	Visualization	of	Neuronal	Oscillators	

	
Another	feature	of	the	Kuramoto	model	is	that	it	models	the	synchrony	of	a	
population	of	neurons.	The	strength	of	synchrony	is	modulated	by	the	coupling	
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factor,	K.	In	Equation	16,	the	coupling	term,	𝐾𝑟 sin 𝜓 − 𝜃^ ,	includes	two	order	
parameters	that	are	calculated	at	each	time	step:	𝜓,	which	is	the	population’s	mean	
phase,	and	𝑟 ∈ [0,1],	which	is	the	magnitude	of	the	mean	vector	of	the	phases	
plotted	on	the	unit	circle	and	represents	the	coherence	of	the	population’s	phases.	r	
close	to	1	means	the	population	is	highly	synchronized	(Equation	17).		
	

𝜓 =
1
𝑁 𝜃^

j

^`\

	

𝑋 =
1
𝑁 cos 𝜃^

j

^`\

, 𝑌 =
1
𝑁 sin 𝜃^

j

^`\

	

𝑟 = 𝑋9 + 𝑌9	
Equation	17a-c:	Order	Parameters	for	Kuramoto	Model	

	
Intuitively,	the	coupling	term	“speeds	up”	oscillators	that	are	“behind”	the	mean	
phase,	𝜓,	and	“slows	down”	those	that	are	ahead	of	the	mean	phase.	For	instance,	if	
the	i-th	oscillator	is	“behind”	the	mean	phase,	then	𝜓 − 𝜃^ > 0,	making	the	sin	term	
positive	and	thus	the	whole	coupling	term	contributes	an	increase	to	the	phase	𝜃^ 	in	
the	update	rule	(Equation	16).	
	
The	model	also	captures	the	noisiness	of	neuronal	spiking	by	adding	Gaussian	noise	
with	a	mean	of	0	and	a	standard	deviation	of	 𝑑𝑡,	which	ensures	that	the	effect	of	
the	noise	does	not	depend	on	the	size	of	the	time	step,	and	then	scaling	the	Gaussian	
noise	by	the	noise	constant,	𝛼.	
	
Finally,	the	extended	model	incorporates	DBS	in	the	last	term	of	the	update	rule.	
The	function,	𝑧 𝜃^ : 0,2𝜋 → [0,1],	represents	the	phase	response	function	of	an	
individual	neuron,	as	previous	work	has	demonstrated	that	a	neuron’s	response	to	
stimulation	is	phase-dependent	(Best,	1979;	Guttman	et	al.,	1980).	Typically,	in	the	
literature,	the	phase	response	function	takes	on	a	sinusoid	function,	i.e.	𝑧 𝜃^ =
cos 𝜃^ 	(Tass,	2003).	Note	that	this	is	similar	yet	not	the	same	as	the	change	in	phase	
of	an	aggregate	population	of	neurons	or	that	of	a	behavioral	output	like	a	hand	
tremor.	Being	able	to	derive	an	appropriate	phase	response	function	of	an	individual	
neuron	from	aggregate	populations	remains	an	area	of	active	research	(Netoff	et	al.,	
2012;	Wilson	and	Moehlis,	2015).	Next,	the	stimulation	function	𝑢^(𝑡)	denotes	
whether	the	i-th	oscillator	is	stimulated	at	time	t	(Equation	18).	The	
parameterization	of	𝑢^ 𝑡 	by	oscillator	allows	for	DBS	to	effect	only	a	sub-population	
of	oscillators.	Lastly,	the	DBS	strength	parameter,	𝛽,	scales	the	phase-dependent	and	
oscillator-specific	effect	of	DBS.	
	

𝑢^ 𝑡 = 	 		1, if	oscillator	𝑖		is	stimulated	at	time	𝑡
0, otherwise 	

Equation	18:	Tass,	2003’s	Stimulation	Function	
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This	extended	Kuramoto	model	can	be	used	to	model	tremor	amplitude	by	
averaging	the	cosine	parts	of	the	phases	(Equation	19).	
	

𝑎 𝑡 =
1
𝑁 cos[𝜃^(𝑡)]

j

^`\

	

Equation	19:	Modeling	Tremor	Amplitude	

	
In	summary,	the	free	model	parameters	are	oscillator	frequencies,	{𝜔^|𝑖 = 1,… ,𝑁},	
the	coupling	constant,	K,	the	noise	constant,	𝛼,	and	the	DBS	strength	constant,	𝛽.	
Additionally,	the	number	of	oscillators,	N,	and	the	size	of	the	time	step,	dt,	must	be	
chosen.	With	𝛽 = 0,	the	update	rule	is	reduced	to	the	typical	formulation	of	the	
Kuramoto	model;	thus,	the	DBS	term	was	the	primary	theoretical	extension	from	
Tass’	work.	
	

Stimulation	Function	Extension	on	Tass,	2003	
First,	for	this	project,	the	assumption	is	made	that	stimulation	instantaneously	
affects	oscillators	at	the	same	time;	the	binary	indicator	function,	𝑖 𝑡 ,	indicates	if	
when	stimulation	is	being	given	at	time	t	(Equation	20).	Further	work	could	be	done	
to	explore	using	different	time	delays	for	different	oscillators,	simulating	the	time	it	
takes	for	a	pulse	to	travel	to	a	neuron.	
	

𝑖 𝑡 = 	 		1, if	stimulation	is	given	at	time	𝑡
0, otherwise 	

Equation	20:	Indicator	Function	for	Stimulation	

	
For	this	project,	four	different	stimulation	functions	𝑢^ 𝑡 	were	tested	to	investigate	
more	biologically	plausible	models	of	DBS.	Unless	otherwise	specified,	throughout	
the	rest	of	the	dissertation,	𝑢^ 𝑡 	in	the	update	rule	(Equation	16)	will	be	denoted	
𝑢∗ 𝑖, 𝑡 	where	the	asterisk	indicates	which	stimulation	effect	function	is	being	used.	
A	stimulation	function	𝑢∗ 𝑖, 𝑡 	(Equation	21)	captures	if	stimulation	is	being	given	at	
time	t	with	the	indicator	function	𝑖 𝑡 	as	well	as	what	kind	of	effect	stimulation	has	
on	a	population	of	neurons	with	a	stimulation	effect	function	𝑠∗(𝑖).	
		

𝑢∗ 𝑖, 𝑡 = 𝑖 𝑡 ×𝑠∗(𝑖)	
Equation	21:	General	form	for	Stimulation	Function	

	
First,	a	uniform	stimulation	effect	function,	𝑠� 𝑖 ,	that	decoupled	DBS	strength	from	
the	number	of	oscillators,	was	developed	(Equation	22).	Using	𝑠� 𝑖 ,	the	uniform	
stimulation	function	𝑢t 𝑖, 𝑡 	is	most	similar	to	the	one	used	in	Tass,	2003,	except	
that	it	assumes	that	stimulation	affects	all	oscillators	instantaneously.	
	

𝑠� 𝑖 =
1
𝑁	
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Equation	22:	Uniform	Stimulation	Effect	Function	

	
Next,	a	random	stimulation	effect	function,	𝑠U 𝑖 ,	was	developed	in	an	attempt	to	
capture	the	effect	that	a	thalamic	neuron’s	response	to	DBS	is	likely	proportional	to	
its	distance	from	the	DBS	electrode.	This	function	first	draws	N	samples	from	the	
standard	uniform	distribution	and	then	normalizes	them	(Equation	23).	The	
weights	of	DBS	stimulation	effect	are	fixed	after	the	simulation	is	initialized,	when	
the	N	uniform	samples	are	drawn	and	normalized.	
	

𝑥^ ← 𝒰 0,1 	
𝑠U 𝑖 =

𝑥^
𝑥�j

�`\
	

Equation	23a-b:	Random	Stimulation	Effect	Function	

	
Additionally,	a	“half”	stimulation	effect	function,	𝑠� 𝑖 ,	is	presented	in	order	to	
naively	model	the	phenomenon	that	two	neuronal	populations,	one	in	the	motor	
cortex	and	one	in	the	thalamus,	might	contribute	to	Parkinsonian-like	tremor;	
however,	only	the	thalamus	is	stimulated;	thus,	DBS	should	only	effect	one	
population	(Equation	24).		
	

𝑠� 𝑖 = 			
2
𝑁 , if	𝑖 ≤ 	

𝑁
2

0, otherwise
		

Equation	24:	Half	Stimulation	Effect	Function	

	
Lastly,	a	“mixture”	stimulation	function,	𝑠� 𝑖 ,	attempts	to	capture	both	qualities	of	
the	random	and	“half”	stimulation	functions	(Equation	25).		
	

𝑦^ ← 		𝒰 0,1 , if	𝑖 ≤ 	
𝑁
2

0, otherwise
		

𝑠� 𝑖 =
𝑦^
𝑦�j

�`\
	

Equation	25:	Mixture	Stimulation	Effect	Function	

	
Note	that	for	all	functions,	,	 𝑠∗ 𝑖 = 1j

^`\ .	This	normalization	was	added	to	make	
DBS	strength	independent	from	N	and	to	make	the	stimulation	effect	functions	
comparable	to	one	another,	as	the	same	amount	of	DBS	is	distributed	to	all	
oscillators.		
	

Optimized	Model	Parameters	
In	collaboration	with	lab	member	Dr.	Gihan	Weerasinghe,	model	parameters	
parameters	were	found	via	a	non-linear	optimization	that	minimized	the	least	
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square	error	between	qualities	of	the	model-generated	data	and	those	of	one	patient	
whose	hand	tremor	was	recorded	in	the	absence	of	DBS	(the	patient	was	included	in	
the	Cagnan	et	al.,	2013	study).	The	optimization	fitted	the	model	based	on	the	
following	two	qualities:	1.	the	power	spectrum	of	the	data,	and	2.	the	probability	of	
obtaining	a	particular	tremor	amplitude.	When	using	N	=	10	oscillators,	these	
optimized	model	parameters	were	found:	𝜔^ ← 𝒩(𝜇 = 32.3319, 𝜎 = 2.5804),	𝐾 =
1.89753,	and	𝛼 = 2.66466.	Given	in	radians	per	second,	the	mean	angular	frequency	
from	which	oscillator	frequencies	were	drawn	corresponds	roughly	to	a	bit	more	
than	5Hz,	which	is	close	to	the	natural	4-6Hz	frequency	at	which	Parkinsonian	and	
essential	tremors	occur.	Unless	otherwise	noted,	the	above	parameters	were	used	in	
simulations	reported	in	the	Results	section. 
 

Simulating	Phase-Locked	DBS	
Unless	otherwise	specified,	model	simulations	explained	in	the	Results	section	used	
the	aforementioned	optimized	parameters	as	well	as	the	following	parameters	
chosen	a	priori:	𝛽 = 0.5,	𝑑𝑡 = 1/2048,	𝑁 = 10.	Additionally,	unless	otherwise	noted,	
model	simulations	were	designed	to	mimic	the	experimental	set-up,	with	a	
simulation	block	consisting	of	1	second	of	no	stimulation	followed	by	5-seconds	of	
phase-locked	130Hz,	6-pulse	stimulation	at	12	phases,	i.e.	 0°, 30°, … ,330° .	The	
phase	at	which	DBS	was	locked	to	was	simply	the	mean	phase	of	the	oscillator	
population,	which	was	calculated	at	each	time	step	(Figure	9,	3rd	row).	At	the	start	of	
each	block,	phases	were	uniformly	drawn	from	the	interval	 0,2𝜋 .	Similar	to	the	
experimental	design,	9	blocks	were	simulated	for	each	of	the	12	phases.		
	
Similar	preprocessing	was	conducted	on	the	simulated	data:	while	the	simulated	
data	was	not	resampled	to	1000Hz	like	the	experimental	data,	it	was	band-pass	
filtered	between	3-6Hz	in	the	same	way	(Figure	9,	2nd	row).	The	amplitude	and	
instantaneous	frequency	were	also	calculated	in	the	same	fashion	and	the	same	
changes	in	amplitude,	frequency,	and	phase	metrics	were	calculated	on	the	
simulated	blocks	as	well	as	the	same	statistical	analysis.	The	principal	aim	of	the	
simulations	was	to	reproduce	the	same	effects	observed	in	the	experimental	data	by	
primarily	investigating	what	phase	response	curve	yielded	the	most	experimentally-
consistent	results.	Additional	analysis	was	conducted	to	explore	the	limits	of	the	
model	in	explaining	the	experimental	data	and	is	described	in	the	Results	section.	
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Figure	9:	Simulated	Block	with	Phasic	Stimulation	at	240°	using	Default	Parameters	

(1st	row)	Simulated,	unfiltered	tremor	acceleration	signal,	calculated	using	Eqn	19.	(2nd	row)	
Filtered	 tremor	signal	and	amplitude	(orange	 line).	The	 tremor	signal	 from	the	1st	 row	was	
band-passed	 filtered	 between	 3Hz	 and	 6Hz;	 the	 tremor	 amplitude	 was	 derived	 via	 the	
analytical	signal.	 (3rd	 row).	35ms	of	130Hz	DBS	was	administered	when	the	 filtered	 tremor	
signal	passed	the	240°	phase,	as	tracked	in	the	4th	row.	(4th	row)	Mean	phase	of	the	oscillator	
population.	 (5th	 row)	 Coherence	 metric.	 r	 connotes	 how	 synchronized	 the	 population	 of	
oscillators	is.	
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Extended	Kuramoto	Model	Online	Simulation	Tool	&	Tutorial	
As	part	of	a	public	engagement	event	with	local	Oxfordshire	high	school	students,	an	
online	simulation	of	the	model	used	in	this	project	was	built	(Fong,	2016b).	It	was	
also	used	for	research	to	qualitatively	understand	the	model	and	observe	how	
certain	parameter	changes	affected	the	model.	Additionally,	an	intuitive	online	
tutorial	of	the	model	was	developed	(Fong,	2016c).	Appendix	4	provides	more	
details	about	the	tool.	
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Results	

Analysis	of	Experimental	Data	
An	analysis	of	the	change	in	amplitude,	frequency,	and	phase	for	all	107	
experimental	blocks	demonstrated	a	statistically	significant	phase-dependent	
suppression	of	tremor	when	phase-locked	DBS	is	administered	around	210°-240°.	
The	change	in	amplitude,	frequency,	and	phase	were	calculated	according	to	the	
metrics	described	in	the	Methods	section.	
	

Change	in	Amplitude,	Frequency,	and	Phase	Curves	
When	the	change	in	tremor	amplitude	for	all	blocks	are	plotted	(Figure	10,	1st	row),	
there	appears	to	be	a	suppressive	effect	at	120°	and	240°	and	an	amplifying	effect	at	
30°,	which	diametrically	opposes	210°.	Note	that	all	but	two	240°	blocks	yielded	a	
tremor-suppressive	effect,	and	all	but	three	210°	blocks	did	the	same.	
	
When	the	change	in	instantaneous	frequency	of	the	filtered	tremor	amplitude	for	all	
blocks	are	plotted	(Figure	10,	2nd	row),	there	appears	to	be	a	maximum	peak	at	240°	
and	a	minimum	peak	at	60°,	which	diametrically	opposes	240°.	
	
When	the	change	in	phase	for	all	blocks	are	plotted	(Figure	10,	3rd	row),	there	is	a	
global,	maximum	peak	240°	and	global,	minimum	peak	at	60°,	which	diametrically	
opposes	240°.	There	also	is	a	local,	maximum	peak	at	150°	and	a	local,	minimum	
peak	at	180°.	
	
Most	notably,	at	240°,	the	most	tremor-suppressing	phase	at	which	to	phase-lock	
DBS	to,	the	tremor-suppressing	effect	captured	in	the	change	in	amplitude	curve	is	
correlated	with	a	maximal	speed-up	in	frequency	and	phase.		
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Figure	10:	Change	in	Amplitude,	Frequency,	and	Phase	of	Experimental	Data	

The	change	in	amplitude	(in	m/s2),	∆𝑎	(1st	row),	frequency	(in	Hz),	∆𝑓	(2nd	row),	and	phase	(in	
degrees),	∆𝜃	(3rd	row),	were	calculated	for	all	107	experimental	blocks	and	plotted	above	(blue	
circles).	Linear	interpolations	of	the	median	∆𝑎, ∆𝑓,	and	∆𝜃	for	each	phase	of	stimulation	were	
plotted	(orange	lines)	along	with	standard	error.		
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Significance	Testing	
To	test	whether	the	palpable	suppressive	effects	in	the	change	in	tremor	amplitude	
as	well	as	the	seemingly-phase	dependent	change	in	frequency	and	phase	metrics	
are	statistically	significant,	the	weighted	Moore-Rayleigh	and	Scaled	Rayleigh	
permutation	tests	were	used.	For	each	test	run,	100,000	samples	with	a	sample	size	
of	100	–	comparable	in	size	to	the	107	experimental	blocks	–	were	used	to	generate	
the	null	distribution	with	which	to	compare	the	critical	z	score	of	the	relevant	test	
to.	
	
	 p-value	 Phase	of	resultant	vector	
	 Moore-

Rayleigh	
Scaled	
Rayleigh	

Moore-
Rayleigh	

Scaled	
Rayleigh	

∆𝒂	 0.0056	 0.0067	 31.7°	 30.9°	
−∆𝒂	 0.0190	 0.0065	 216.6°	 210.9°	
∆𝒇	 0.0470	 0.0422	 241.3°	 240.6°	
∆𝜽	 0.0104	 0.0130	 232.6°	 222.7°	

Table	1:	p-values	and	Result	Phases	from	Moore-Rayleigh	and	Scaled	Rayleigh	Significance	Testing	of	
Change	in	Amplitude,	Frequency,	and	Phase	of	Experimental	Data	

	
According	to	these	tests,	there	was	significant	non-uniformity	(p	<	0.05)	for	all	
metrics	(Table	1).	Tests	were	conducted	for	the	negative	change	in	amplitude,	−∆𝑎	,	
to	test	significant	depression,	as	opposed	to	significant	amplification	(Figure	11,	top	
plot).	The	test	for	change	in	amplitude,	∆𝑎,	still	provides	some	information	as	to	the	
direction	of	the	non-uniformity.	The	diametrically	opposite	phases	of	those	test’s	
phases	of	the	resultant	vector,	31.7°	and	30.9°	for	the	Moore-Rayleigh	and	Scaled	
Rayleigh	tests,	are	211.7°	and	210.9°	respectively.	The	phases	of	the	tests’	resultant	
vectors	are	all	within	the	range	210°-242°.	Note	that	these	phases	are	not	
themselves	statistically	significant	metrics	but	simply	show	the	mean	direction	of	
weighted	non-uniformity.	They	are	likely	skewed	to	be	less	than	240°	because	there	
is	a	small	tremor	suppressing	effect	for	120°	phase-locked	DBS.	
	
Figure	11	visualizes	the	tremor	suppressive	effect,	as	well	as	the	correlated	
amplification	of	change	in	frequency	and	phase,	when	DBS	is	phase-locked	around	
210°-240°,	as	there	are	many	more	data	points	with	greater	magnitudes	in	the	third	
quadrant	(corresponding	to	180°-270°)	than	in	the	other	quadrants.		
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Figure	11:	Visualizations	of	Moore-Rayleigh	Test	for	Negative	Change	in	Amplitude,	Change	in	

Frequency,	and	Change	in	Phase	



	 33	

The	 z-score	 normalized	 values	 of	 the	 negative	 change	 in	 amplitude	 (top	 plot),	 change	 in	
frequency	(middle	plot),	and	change	in	phase	(bottom	plot)	metrics	for	all	107	experimental	
blocks	are	plotted	by	their	phases	on	the	unit	circle	as	polar	coordinates,	i.e.	 𝜃^, −∆𝑎^ , (𝜃^, ∆𝑓 ),	
and	(𝜃^, ∆𝜃^)	respectively.	The	metrics	for	the	8-9	blocks	associated	to	a	same	phase	are	colored	
by	 the	 same	 color.	 “+”	markers	 denote	 a	 positive	metric	 value	while	 “o”	markers	 denote	 a	
negative	metric	value;	negative	values	are	plotted	in	the	direction	of	the	diametrically-opposite	
phase.	 The	 p	 <	 0.05	 threshold	 from	 the	Moore-Rayleigh	 permutation	 test	 is	 plotted	 as	 the	
dotted	red	circle,	and	the	Moore-Rayleigh	critical	z-score	of	the	experimental	data	is	plotted	as	
the	magnitude	of	the	black	vector,	whose	phase	denotes	the	phase	of	the	resultant	vector.	For	
space	efficacy,	the	visualization	is	restricted	to	plot	points	with	magnitudes	less	than	1.5.	

	

Correlation	among	Change	in	Amplitude,	Frequency,	and	Phase	
Change	in	amplitude	is	negatively	related	to	change	in	frequency	and	change	in	
phase;	while	change	in	frequency	and	change	in	phase	are	strongly	positively	
correlated.	The	correlation	coefficients	and	corresponding	p-values	were	computed	
between	the	107	change	in	amplitude	values	and	those	of	the	change	in	frequency	
metric;	the	same	comparison	was	done	for	the	other	pairings	of	the	three	metrics	
(Table	2).	The	strong,	positive	correlation	between	change	in	frequency	and	change	
in	phase	is	to	be	expected,	as	the	change	in	phase	metric	is	simply	a	different	
method	for	calculating	frequency	(by	unwrapping	the	actual	phase	of	the	filtered	
tremor	signal).	
	
	 R	(correlation	

coefficient)	
p-value	

∆𝒂	vs.	∆𝒇	 -0.4077	 1.3052	×10�a�	
∆𝒂	vs.	∆𝜽	 -0.4021	 1.7618×10�a�	
∆𝒇	vs.	∆𝜽	 0.6735	 1.8956×10�\�	

Table	2:	Correlation	between	Change	in	Amplitude,	Frequency,	and	Phase	of	Individual	Experimental	
Blocks	

The	correlation	coefficients	and	p-values	of	correlation	were	computed	on	the	107	values	of	
the	change	in	amplitude,	frequency,	and	phase	metrics.	

	
From	the	analysis	of	experimental	data,	phase-locked	DBS	around	240°	best	
suppresses	tremor	(Figure	10,	1st	row).	Furthermore,	tremor	suppression	around	
240°	corresponds	to	maximal	increases	in	frequency	and	phase	across	all	phases	
(Figure	10,	2nd	and	3rd	rows).		
	

Analysis	of	Modelled	Data	
	

Predicting	a	Consistent	Tremor	Suppressive	Model	
Assume	that	all	thalamic	neurons	respond	to	DBS	in	exactly	the	same	phase-
dependent	fashion,	that	is,	that	the	effect	of	DBS	on	one	neuron	at	a	particular	time	
is	identical	to	that	on	another	neuron.	Then,	based	on	Tass,	2003	extension	of	the	
Kuramoto	model,	assuming	that	DBS	affects	all	oscillators	indiscriminately	and	
instantaneously,	the	most	optimal	phase	at	which	to	stimulate	should	be	the	phase	
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at	which	the	phase	response	curve	(PRC)	function	of	an	individual	neuron,	𝑧 𝜃^ ,	has	
the	steepest,	positive	slope	(Wilson	and	Moehlis,	2014).	
	

	
Figure	12:	Cosine	Curve	as	Individual	Neuron’s	Phase	Response	Curve	(PRC)	

	
Suppose	that	the	PRC	for	all	oscillators	was	𝑧 𝜃^ = cos	(𝜃^)	(Figure	12).	Then,	the	
slope	of	the	PRC	is	most	steeply	positive,	i.e.	𝑧′ 𝜃^ ,	the	derivative	of	the	PRC,	has	a	
maximum	point,	at	phase	270°.	If	a	population	of	Kuramoto	oscillators	with	the	
cosine	function	as	its	PRC	is	“stimulated”	when	the	population’s	mean	phase	is	270°,	
the	oscillators	will	become	more	desynchronized.	This	is	because	the	oscillators	
with	phases	greater	than	270°	will	speed	up,	because	𝑧 270° + 𝜀 > 0,	while	the	
oscillators	with	phases	less	than	270°	will	slow,	because	𝑧 270 − 𝜀 < 0	(Figure	13).	
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Figure	13:	Diagram	of	the	Optimal	Stimulation	Strategy	for	the	Kuramoto	Model	

Kuramoto	oscillators	(orange	circles)	are	oscillating	counter-clockwise	(indicated	by	the	gray	
arrow).	If	the	oscillators’	PRC	function	is	𝑧 𝜃^ = cos	(𝜃^),	then	the	optimal	phase	of	stimulation	
is	when	the	mean	phase	of	the	oscillators	is	equal	to	270°.	This	is	because	the	oscillators	whose	
phases	are	greater	than	270°	will	speed	up	while	those	whose	phases	are	less	than	270°	will	
slow	down,	thereby	desynchronizing	the	population.		

	
Based	on	this	interpretation	of	the	extended	Kuramoto	model,	to	model	maximal	
tremor	suppression	at	240°	as	was	observed	in	the	experimental	data,	a	PRC	such	as	
𝑧 𝜃^ = cos	(𝜃^ +

�
�
)	should	be	used,	because	the	curve	is	most	positively	sloped	and	

crosses	the	y-axis	at	240°	(Figure	14).	
	

	
Figure	14:	Default	PRC	function,	𝒛 𝜽𝒊 = 𝐜𝐨𝐬(𝜽𝒊 +

𝝅
𝟔
),	for	Extended	Kuramoto	Model	
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Default	Parameters	for	Extended	Kuramoto	Model	
Unless	otherwise	mentioned,	the	following	default	parameters	are	used	to	simulate	
the	Kuramoto	model	(Equation	16).		
	
These	parameters	were	found	via	an	optimization	that	chose	the	parameters	that	
best	simulated	tremor	signal	of	an	essential	tremor	patient	in	the	absence	of	DBS:	

• Initial	phases	of	oscillators	=	𝜃^ ← 𝒰( 0,2𝜋 )	
• Angular	frequency	of	oscillators:	𝜔^ ← 𝒩(𝜇 = 32.3319, 𝜎 = 2.5804),	
• Coupling	constant:	𝐾 = 1.89753,	
• Noise	constant:	𝛼 = 2.66466,	

	
These	parameters	were	fixed	a	priori:		

• Number	of	oscillators:	𝑁 = 10,	
• Time	step:	𝑑𝑡 = 1/2048,	
• DBS	strength	constant:	𝛽 = 0.5,	
• PRC	function:	𝑧 𝜃^ = cos	(𝜃^ +

�
�
),	

• Stimulation	function:	𝑢� 𝑖, 𝑡 = 𝑖 𝑡 × \
j
	

	
To	simulate	the	experimental	trial,	6-second	blocks	of	the	Kuramoto	model	were	
simulated,	in	which	1	second	of	no	stimulation	was	followed	by	5	seconds	of	130Hz,	
6-pulse	stimulation	locked	to	a	specific	phase.	108	blocks	were	simulated,	9	blocks	
for	each	of	the	12	phases,	i.e.	 0°, 30°, … ,330° .	9,	6-second	reference	blocks,	in	
which	no	DBS	was	administered,	were	also	simulated	and	used	as	a	baseline	to	
compare	with	which	to	compare	the	phase-locked-DBS	simulated	blocks.		
	
See	the	Methods	section	for	more	details	on	how	parameters	were	chosen	and	the	
simulations	were	executed.	
	

Results	using	Default	Parameters	
When	simulating	the	experimental	set-up	using	the	extended	Kuramoto	with	the	
aforementioned	default	parameters,	statistically	significant	tremor	suppression	was	
observed	(Table	3).	However,	the	model	failed	to	provide	an	explanation	for	the	
simulated	suppression	that	was	consistent	with	the	experimental	data	for	tremor	
suppression.	
	
Change	in	Amplitude,	Frequency,	and	Phase	
The	same	change	in	amplitude,	frequency,	and	phase	metrics	were	computed	on	the	
simulated	as	was	done	on	the	experimental	data.	
	
From	the	change	in	amplitude	curve,	tremor	suppression	appeared	strongest	in	
simulated	blocks	in	which	DBS	was	phase-locked	to	180°-270°	(Figure	15,	1st	row).	
This	broad	suppression	effect	for	phases	180°-270°	differs	from	that	observed	in	the	
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experimental	data	(Figure	10,	1st	row),	which	had	a	small	suppressive	effect	at	
phase	150°	and	another	at	240°.	
	
While	the	relationship	between	the	change	in	amplitude	(Figure	15,	1st	row)	and	
change	in	frequency	curves	(Figure	15,	2nd	row)	is	not	apparent	without	further	
analysis,	tremor	suppression	for	phase-locked	stimulation	at	180°-270°	(Figure	15,	
1st	row)	appears	correlated	to	the	positive	slope	and	zero-crossing	in	the	change	in	
phase	curve	at	180°-270°	(Figure	15,	3rd	row).	Quantitatively,	Table	6	confirms	this	
relationship	and	shows	that	the	change	in	amplitude,	∆𝑎,	is	negatively	correlated	to	
the	derivative	approximation	of	the	change	in	frequency,	 �

��
(∆𝑓),	(𝑅	 = 	−0.64, 𝑝	 =

	0.02)	as	well	as	to	the	derivative	approximation	of	the	change	in	phase,	 �
��
(∆𝜃)	

(𝑅	 = 	−0.76, 𝑝	 = 	0.004).	
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Figure	15:	Change	in	Amplitude,	Frequency,	and	Phase	of	Simulated	Data	using	Default	Parameters	

The	 change	 in	 amplitude	 (m/s2),	 ∆𝑎 	(1st	 row),	 frequency	 (Hz), 	∆𝑓 	(2nd	 row),	 and	 phase	
(degrees),	∆𝜃	(3rd	row),	were	calculated	for	all	108	simulated	blocks	and	plotted	above	(red	
circles).	Linear	interpolations	of	the	median	∆𝑎, ∆𝑓,	and	∆𝜃	for	each	phase	of	stimulation	were	
plotted	(blue	lines)	along	with	the	standard	error.	The	median	change	in	amplitude,	frequency,	
and	phase	for	the	9	reference	blocks	of	no	stimulation	were	also	plotted	(orange	lines).	

	
Significant	Testing	
The	same	weighted	Rayleigh	tests	were	used	to	determine	whether	there	was	
significant	non-uniformity	in	the	change	in	amplitude,	frequency,	and	phase	curves	
for	the	simulated	data.	These	tests	report	quite	high	confidence	in	a	non-uniform	
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effect	for	all	curves	(Table	3).	While	not	a	rigorous	statistic,	the	phases	of	the	
resultant	vectors	from	these	tests	for	change	in	amplitude	(Table	3)	compared	to	
those	of	the	experimental	data	(Table	1)	suggest	that	the	model	may	roughly	have	a	
similar	tremor	suppression	effect	around	210°-240°.	However,	the	phases	of	the	
resultant	vectors	for	change	in	frequency	and	phase	tests	on	the	simulated	data,	i.e.	
320°-330°,	are	nearly	perpendicular	to	those	for	the	corresponding	experimental	
tests,	i.e.	220-240°.	This	suggests	that	the	model	may	not	explain	the	phase-
dependent	tremor	suppression	of	this	particular	patient.	Visualizations	of	the	
Moore-Rayleigh	test	for	the	negative	change	in	amplitude,	change	in	frequency,	and	
change	in	phase	are	provided	in	Figure	16.	
	
	 p-value	 Phase	of	resultant	vector	
	 Moore-Rayleigh	 Scaled	Rayleigh	 Moore-Rayleigh	 Scaled	Rayleigh	
∆𝒂	 < 10��	 < 10��	 34.8°	 36.4°	
−∆𝒂	 < 10��	 < 10��	 214.8°	 216.4°	
∆𝒇	 10��	 10��	 323.8°	 328.5°	
∆𝜽	 < 10��	 < 10��	 323.0°	 321.7°	

Table	3:	p-values	and	Result	Phases	from	Moore-Rayleigh	and	Scaled	Rayleigh	Significance	Testing	of	
Change	in	Amplitude,	Frequency,	and	Phase	of	Simulated	Data	using	Default	Parameters	
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Figure	16:	Visualizations	of	Moore-Rayleigh	Test	for	Negative	Change	in	Amplitude,	Change	in	

Frequency,	and	Change	in	Phase	of	Simulated	Data	using	Default	Parameters	
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The	 z-score	 normalized	 values	 of	 the	 negative	 change	 in	 amplitude	 (top	 plot),	 change	 in	
frequency	(middle	plot),	and	change	in	phase	(bottom	plot)	metrics	for	all	108	simulated	blocks	
are	plotted	by	their	phases	on	the	unit	circle	as	polar	coordinates,	i.e.	 𝜃^, −∆𝑎^ , (𝜃^, ∆𝑓 ),	and	
(𝜃^, ∆𝜃^)	respectively.	The	metrics	for	the	8-9	blocks	associated	to	a	same	phase	are	colored	by	
the	same	color.	“+”	markers	denote	a	positive	metric	value	while	“o”	markers	denote	a	negative	
metric	value;	negative	values	are	plotted	in	the	direction	of	the	diametrically-opposite	phase.	
The	p	<	0.05	threshold	from	the	Moore-Rayleigh	permutation	test	is	plotted	as	the	dotted	red	
circle,	 and	 the	 Moore-Rayleigh	 critical	 z-score	 of	 the	 experimental	 data	 is	 plotted	 as	 the	
magnitude	of	the	black	vector,	whose	phase	denotes	the	phase	of	the	resultant	vector.	For	space	
efficacy,	the	visualization	is	restricted	to	plot	points	with	magnitudes	less	than	1.5.		

	
Comparison	to	Experimental	Data	
To	quantify	the	difference	between	the	simulated	and	experimental	data,	the	
Pearson’s	correlation	coefficients	were	computed	between	the	corresponding	
change	in	amplitude,	frequency,	and	phase	curves	of	the	simulated	and	
experimental	data	(Table	4).	There	is	a	significant	linear	correlation	between	the	
change	in	amplitude	effects	in	the	simulated	and	experimental	data,	but	no	such	
relationship	between	the	change	in	frequency	or	phase.		
	

	 R	(correlation	coefficient)	 p-value	
∆𝒂𝒆𝒙𝒑	vs.	∆𝒂𝒔𝒊𝒎	 0.6437	 0.0239	
∆𝒇𝒆𝒙𝒑	vs.	∆𝒇𝒔𝒊𝒎	 0.0226	 0.9445	
∆𝜽𝒆𝒙𝒑	vs.	∆𝜽𝒔𝒊𝒎	 -0.0093	 0.9770	

Table	4:	Correlations	between	Median	Change	in	Amplitude,	Frequency,	and	Phase	of	Experimental	Data	
and	those	of	Simulated	Data	using	Default	Parameters	

The	correlation	coefficients	and	p-values	of	correlation	were	computed	between	the	12	median	
values	of	the	change	in	amplitude,	frequency,	and	phase	metrics	of	the	experimental	data	and	
the	12	median	values	of	the	same	metrics	of	the	simulated	data	using	default	parameters.	

	
Within	both	the	set	of	experimental	blocks	and	the	set	of	simulated	blocks,	the	
correlation	coefficients	among	the	different	metrics	were	also	computed	(Table	5).	
While	there	were	significant,	inverse	correlations	between	change	in	amplitude	and	
change	in	frequency	(∆𝑎	vs.	∆𝑓)	as	well	as	change	in	amplitude	and	change	in	phase	
(∆𝑎	vs.	∆𝜃)	among	experimental	blocks,	there	were	only	weak,	positive	correlations	
among	the	same	pairs	of	metrics	among	simulated	blocks.		
	
	 R	(correlation	coefficient)	 p-value	
	 Experimental	 Simulated	 Experimental	 Simulated	
∆𝒂	vs.	∆𝒇	 -0.4077	 0.1567	 1.31	×10�a�	 0.1053	
∆𝒂	vs.	∆𝜽	 -0.4021	 0.0265	 1.76×10�a�	 0.7857	
∆𝒇	vs.	∆𝜽	 0.6735	 0.6955	 1.90×10�\�	 6.69×10�\¦	

Table	5:	Correlation	between	Change	in	Amplitude,	Frequency,	and	Phase	of	Individual	Experimental	
Blocks	and	Individual	Simulated	Blocks	using	Default	Parameters	

The	correlation	coefficients	and	p-values	of	correlation	were	computed	on	the	107	values	of	
the	change	in	amplitude,	frequency,	and	phase	metrics	of	the	experimental	data	(Table	2)	and	
on	the	108	corresponding	values	of	the	modelled	data	using	default	parameters.	
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Lastly,	for	both	experimental	and	simulated	data,	the	12	median	values	of	each	
curve,	corresponding	to	the	12	phases	DBS	was	locked	to,	were	correlated	with	each	
other	(Table	6).	Additionally,	the	median	values	of	the	change	in	amplitude	curve	
was	correlated	with	approximations	of	the	derivatives	of	the	change	in	frequency	
and	in	phase.	The	derivative	approximation	for	a	median	value	at	phase	𝜃	was	
computed	by	taking	the	difference	between	the	median	value	at	phase	𝜃 + 30°	and	
that	at	phase	𝜃 − 30°.	In	the	experimental	data,	change	in	amplitude	is	strongly,	
negatively	correlated	with	change	in	frequency	and	phase.	In	contrast,	in	the	
simulation	data,	change	in	amplitude	is	strongly,	negatively	correlated	with	the	
derivative	approximations	of	change	in	frequency	and	phase.	This	is	expected	by	
Wilson	and	Moehlis,	2014,	which	explains	that	the	optimal	phasic	DBS	strategy	
should	be	to	stimulate	at	the	phase	at	which	the	PRC	has	a	positive	zero-crossing,	
that	is,	where	its	derivative	is	most	positive.	While	later	simulations	demonstrate	
the	population’s	change	in	phase	curve	is	a	non-linear	transformation	of	the	
individual	PRC	function,	the	change	in	frequency	and	phase	curves	are	simply	
population	metrics	of	the	same	concept	that	the	PRC	function	is	an	individual	
oscillator’s	metric	for.	

	
	 R	(correlation	coefficient)	 p-value	
	 Experimental	 Simulated	 Experimental	 Simulated	
∆𝒂	vs.	∆𝒇	 -0.7427	 -0.0842	 0.0057	 0.7947	

∆𝒂	vs.	 𝒅
𝒅𝜽
(∆𝒇)	 -0.4774	 -0.6447	 0.1166	 0.0236	

∆𝒂	vs.	∆𝜽	 -0.6869	 0.0364	 0.0136	 0.9106	
∆𝒂	vs.	 𝒅

𝒅𝜽
(∆𝜽)	 -0.4367	 -0.7602	 0.1558	 0.0041	

∆𝒇	vs.	∆𝜽	 0.8246	 0.7752	 0.000967	 0.0031	
Table	6:	Correlations	among	Median	Change	in	Amplitude,	Frequency,	and	Phase	as	well	as	Select	
Derivative	Approximations	of	Experimental	and	Simulated	Blocks	using	Default	Parameters	

For	 both	 experimental	 and	 simulated	 data,	 the	 correlation	 coefficients	 and	 p-values	 of	
correlation	were	 computed	on	 the	12	median	values	of	 the	 following	pairings:	1.	 change	 in	
amplitude	and	change	in	frequency,	2.	change	in	amplitude	and	the	derivative	approximation	
of	change	in	frequency,	3.	change	in	amplitude	and	change	in	phase,	4.	change	in	amplitude	and	
the	derivative	approximation	of	 change	 in	phase,	and	5.	 change	 in	 frequency	and	change	 in	
phase.	

	
These	quantifiable	differences	between	the	experimental	and	simulated	data	
suggest	that	the	model	does	not	explain	phase-dependent	suppression	for	the	
patient	from	which	the	experimental	data	was	recorded.	While	it	captures	phase-
dependent	suppression,	the	extended	Kuramoto	model	proposes	the	optimal	phase	
at	which	to	stimulate	is	the	one	at	which	there	is	a	positive,	zero-crossing	in	its	
change	in	frequency	or	phase.	In	contrast,	in	the	essential	tremor	patient	with	whom	
the	phase-locked	DBS	trial	was	conducted,	the	optimal	strategy	appears	to	be	
stimulating	at	the	phase	at	which	change	in	frequency	or	phase	is	most	positive.	
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Results	using	Different	Stimulation	Functions	
From	the	experimental	data,	tremor	suppression	seems	correlated	to	the	greatest,	
positive	shift	in	frequency	or	phase.	It	was	hypothesized	that	the	greatest	phase	
shift	effect	yielded	the	most	tremor	suppression	because	DBS	desynchronized	two	
sub-populations,	speeding	up	only	a	portion	of	neurons.	Under	this	hypothesis,	
tremor	would	be	most	suppressed	when	a	sub-population	was	most	speed	up	by	
DBS.		
	
To	test	this	hypothesis	and	extend	the	Kuramoto	model	to	better	capture	this	
relationship	between	tremor	suppression	and	change	in	phase,	a	few	more	
biologically-plausible	stimulation	functions	were	proposed.	The	“half”	stimulation	
function	limits	the	effect	of	DBS	to	half	of	the	oscillator	population;	this	captures	the	
fact	that	both	the	thalamus	and	cortex	coordinate	motor	movements	yet	DBS	only	
affects	a	population	of	thalamic	neurons.	The	“random”	stimulation	function	
randomly	weighted	the	effect	of	DBS	on	individual	oscillators,	simulating	the	
varying	distances	neurons	are	from	the	DBS	probe.	The	“mixture”	stimulation	
functions	combines	both	features	from	the	“half”	and	“random”	functions.	In	the	
“random”	setting,	desynchronization	was	hypothesized	to	occur	between	weakly	
and	strongly	DBS-affected	oscillators,	while	in	the	“half”	setting,	desynchronization	
was	thought	to	occur	between	the	half	sub-population	representing	DBS-affected	
thalamic	neurons	and	the	other	half,	representing	unaffected,	cortical	neurons.	See	
the	Stimulation	Function	Extension	on	Tass,	2003	section	for	more	details	about	the	
different	stimulation	functions.	
	
Simulations	modelling	the	experimental	set-up	were	conducted	using	each	of	the	
above	stimulation	functions.	The	Moore-Rayleigh	test	demonstrated	significant	non-
uniform	effects	(𝑝 < 10��)	for	the	change	in	amplitude,	frequency,	and	phase	curves	
of	all	simulations.	One	confirmation	that	the	simulations	were	better	describing	the	
experimental	data	would	be	if	the	phases	of	the	resultant	vectors	of	the	different	
metrics	were	roughly	around	240°.	However,	while	the	phases	of	the	Moore-
Rayleigh	resultant	vectors	for	the	negative	change	in	amplitude	curves	were	in	the	
range	of	213°-227.5°,	the	phases	of	the	resultant	vectors	for	the	change	in	frequency	
and	phase	curves	were	in	the	range	of	315°-330°,	a	70°-90°	shift	from	240°.	
	
Like	the	simulation	using	default	parameters	and	the	uniform	stimulation	function,	
there	was	significant	correlation	between	the	experimental	and	simulated	change	in	
amplitude	curves	yet	none	between	the	change	in	frequency	and	phase	curves	
(Table	7).		
	

	 R	 p-value	
Exp	vs.	Sim	 Uni	 Half	 Rand	 Mix	 Uni	 Half	 Rand	 Mix	
∆𝒂𝒆	vs.	∆𝒂𝒔	 0.644	 0.770	 0.811	 0.706	 0.024	 0.003	 0.001	 0.010	
∆𝒇𝒆	vs.	∆𝒇𝒔	 0.023	 -0.073	 -0.080	 0.071	 0.944	 0.821	 0.804	 0.825	
∆𝜽𝒆	vs.	∆𝜽𝒔	 -0.010	 0.180	 0.119	 0.022	 0.977	 0.576	 0.713	 0.945	

Table	7:	Correlations	between	Median	Change	in	Amplitude,	Frequency,	and	Phase	of	Experimental	Data	
and	those	of	Simulated	Data	using	Different	Stimulation	Functions	
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The	correlation	coefficients	and	p-values	of	correlation	were	computed	between	the	12	median	
values	of	the	change	in	amplitude,	frequency,	and	phase	metrics	of	the	experimental	data	and	
the	12	median	values	of	the	same	metrics	of	the	simulated	data	using	the	uniform	(Uni),	half	
(Half),	random	(Rand),	and	mixture	(Mix)	stimulation	functions.	

	

Similarly,	unlike	the	experimental	data,	whose	change	in	amplitude	and	change	in	
frequency	and	phase	curves	were	strongly,	negatively	correlated,	the	only	strong	
correlations	within	the	simulated	data	for	each	stimulation	function	was	between	
change	in	amplitude	and	the	derivative	approximation	of	change	in	frequency	and	
phase	(Table	8).	
	

	 R	 p-value	
	 Uni	 Half	 Rand	 Mix	 Uni	 Half	 Rand	 Mix	

∆𝒂	vs.	∆𝒇	 -0.084	 0.477	 0.197	 0.341	 0.795	 0.117	 0.539	 0.279	
∆𝒂	vs.	 𝒅

𝒅𝜽
(∆𝒇)	 -0.645	 -0.767	 -0.682	 -0.596	 0.024	 0.004	 0.015	 0.041	

∆𝒂	vs.	∆𝜽	 0.036	 0.293	 0.047	 0.022	 0.911	 0.355	 0.884	 0.946	
∆𝒂	vs.	 𝒅

𝒅𝜽
(∆𝜽)	 -0.760	 -0.670	 -0.878	 -0.700	 0.004	 0.017	 < 10�r	 0.011	

∆𝒇	vs.	∆𝜽	 0.775	 0.915	 0.883	 0.794	 0.003	 < 10��	 < 10��	 0.002	
Table	8:	Correlations	among	Median	Change	in	Amplitude,	Frequency,	and	Phase	as	well	as	Select	
Derivative	Approximations	of	Experimental	and	Simulated	Blocks	using	Default	Parameters	

For	 simulated	 data	 using	 the	 four	 stimulation	 functions,	 the	 correlation	 coefficients	 and	 p-
values	 of	 correlation	were	 computed	 on	 the	 12	median	 values	 of	 the	 following	 pairings:	 1.	
change	 in	 amplitude	 and	 change	 in	 frequency,	 2.	 change	 in	 amplitude	 and	 the	 derivative	
approximation	of	change	in	frequency,	3.	change	in	amplitude	and	change	in	phase,	4.	change	
in	amplitude	and	the	derivative	approximation	of	change	in	phase,	and	5.	change	in	frequency	
and	change	in	phase.	

	
From	these	limited	simulations,	these	stimulation	functions	may	not	be	able	to	
capture	the	phase-dependent	correlation	between	tremor	suppression	and	positive	
phase	shift	of	the	experimental	patient.	
	
	Change	in	Amplitude	Curves	
When	using	the	“half”	stimulation	function,	there	appears	to	be	a	broad	tremor-
suppressing	effect	at	180°-270°	(Figure	17,	1st	row).	In	contrast,	when	using	the	
“random”	stimulation	function,	there	appears	to	be	a	sharper,	narrower,	tremor-
suppressing	effect	at	240°-270°	(Figure	17,	2nd	row).	This	is	also	more	similar	to	the	
clear,	narrow	effect	observed	in	the	experimental	data	at	240°	(Figure	10,	1st	row);	
the	change	in	amplitude	curve	for	the	“random”	simulation	is	also	the	most	
correlated	with	that	of	the	experimental	data	(Table	7).	Lastly,	there	is	a	weak,	
broad	tremor-suppressing	effect	in	the	“mixture”	simulation	(Figure	17,	3rd	row).	
More	repeated	simulations	would	need	to	be	conducted	to	rigorously	analyze	which	
stimulation	function	produces	a	change	in	amplitude	curve	most	similar	to	that	of	
the	experimental	data.	
	
Interestingly,	the	three	curves	below	(Figure	17)	show	a	small,	local	minimum	
around	60°-90°	similar	to	that	in	the	experimental	data	at	120°	(Figure	10,	1st	row);	
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however,	unlike	the	experimental	data,	these	dips	in	the	simulated	data	are	still	
weak	tremor-amplifying	effects,	as	they	are	above	the	reference	change	in	
amplitude	baseline.		
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Figure	17:	Change	in	Amplitude	Curves	for	Simulated	Data	when	using	“Half”,	“Random”,	and	“Mixture”	
Stimulation	functions	

The	change	 in	amplitude,	∆𝑎,	was	calculated	 for	all	108	simulated	blocks	generated	 in	each	
simulation	using	the	“Half”	(1st	row),	“Random”	(2nd	row),	and	“Mixture”	(3rd	row)	stimulation	
function	and	plotted	above	(red	circles).	When	using	each	of	these	stimulation	functions,	linear	
interpolations	of	 the	median	∆𝑎	for	each	phase	of	 stimulation	are	plotted	 (blue	 lines)	along	
with	the	standard	error.	The	median	change	in	amplitude	values	for	the	9	reference	blocks	of	
no	stimulation	are	also	plotted	(orange	lines).	

	

Non-Linear	Transformation	from	Individual	PRC	to	Change	in	Mean	Phase	of	Oscillator	
Population	
There	was	a	palpable	difference	between	the	individual	PRC	function	(Figure	14)	
used	by	default,	𝑧 𝜃^ = cos	(𝜃^ +

�
�
),	which	represents	the	phase-dependent	shift	in	

phase	of	a	single	oscillator	in	response	to	DBS,	and	the	change	in	phase	curve	
(Figure	15,	3rd	row),	which	captures	the	mean	phase	shift	of	the	oscillator	
population.	
	
The	weakly	coupled	interactions	among	oscillators	was	hypothesized	as	the	reason	
for	this	non-linear	relationship	between	the	individual	neuron’s	PRC	and	the	
population’s	change	in	phase	curve.	To	test	this	hypothesis,	simulations	were	
conducted	that	varied	the	number	of	oscillators	from	2	to	20	and	otherwise	used	the	
default	model	parameters.	For	each	simulation,	the	mean	squared	error	(MSE)	was	
computed	between	the	individual	PRC	and	the	population’s	median	change	in	phase	
curve	(Figure	18).	There	is	a	strong,	positive	correlation	between	the	number	of	
oscillators	used	and	the	oscillator	population’s	divergence	from	the	individual	PRC.	
	

	
Figure	18:	Mean	Squared	Error	between	Default	PRC	Function	and	Median	Change	in	Phase	in	Simulated	

Data	as	Number	of	Oscillators	Increases	
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Using	 the	 default	 model	 parameters	 and	 only	 varying	 the	 number	 of	 oscillators	 used,	 the	
experimental	 set-up	was	 simulated	 once	 for	 each	𝑁	 ∈ 	 {2, … , 20} .	 The	mean	 squared	 error	
(MSE)	was	calculated	between	the	default	PRC	function,	𝑧 𝜃^ = cos	(𝜃^ +

�
�
),	which	represents	

an	individual	neuron’s	phase-dependent	response	to	DBS,	and	the	change	in	phase	curve,	like	
that	in	Figure	15,	3rd	row,	from	that	simulation.	The	correlation	coefficient	and	corresponding	
p-value	were	computed	between	the	number	of	oscillators,	𝑁,	and	the	plotted,	corresponding	
MSE.	

	
Median	change	in	phase	curves	for	simulations	using	N	=	2,	5,	and	8	oscillators	are	
included	in	Appendix	2:	Simulated	Change	in	Phase	Curves	with	Different	Numbers	
of	Oscillators,	where	the	divergence	can	be	visually	observed.	
	
It	is	reasonable	that	weak	coupling	among	oscillators	would	introduce	a	non-linear	
transformation	between	the	individual	PRC	and	the	population	change	in	phase	
(Wilson	and	Moehlis,	2015).	This	effect	adds	another	layer	of	complexity	to	using	
the	extended	Kuramoto	model,	as	at	best,	only	a	large	population	of	neurons	can	be	
recorded	in	the	thalamus	or	cortex.	Note	that	the	experimental	data	is	recording	
tremor	amplitude	and	phase	shifts	there,	not	in	the	thalamus	or	cortex;	thus,	there	
likely	is	another	transformation	from	the	thalamic	and/or	cortical	population	phase	
shift	and	that	observed	in	tremor.	
	

Results	using	Experimental	Change	in	Frequency	and	Change	in	Phase	Curves	as	PRC	
Function	
Despite	the	non-linear	transformation	discovered	above,	it	was	hypothesized	that	
the	model	may	be	able	to	model	the	change	in	frequency	and	phase	curves	of	the	
experimental	data	if	they	were	used	as	the	PRC	function.		
	
However,	the	simulations	described	below	show	that	while	using	these	curves	as	
PRC	functions	produced	somewhat	qualitatively	similar	change	in	frequency	and	
phase	curves	to	those	of	the	experimental	data,	they	were	unable	to	reproduce	
change	in	amplitude	curves	that	were	similar	to	that	of	the	experimental	data.	This	
last	set	of	simulations	demonstrates	the	limitation	of	the	Kuramoto	model	to	
capture	the	optimal	phasic	strategy	that	worked	in	the	essential	tremor	patient;	the	
Kuramoto	simulations	can	only	match	the	change	in	amplitude	curve	or	the	change	
in	frequency	or	phase	curves	of	the	experimental	data,	but	not	all	the	curves.	
	
Directly	Using	Scaled,	Experimental	Change	in	Frequency	Curve	
Using	all	other	default	parameters,	a	linear	interpolation	of	the	experimental	change	
in	frequency	curve	(Figure	10,	2nd	row)	was	scaled	to	range	from	[−1,+1]	and	used	
in	a	model	simulation	as	the	PRC	function,	𝑧(𝜃^)	(Figure	19).	
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Figure	19:	Scaled,	Experimental	Change	in	Frequency	Curve	as	PRC	Function	𝒛(𝜽𝒊)	for	Extended	

Kuramoto	Model	

The	linear	interpolation	of	the	change	in	frequency	curve	from	the	experimental	data	(Figure	
10,	 2nd	 row)	 was	 scaled	 to	 range	 from	 −1,+1 	and	 used	 as	 the	 PRC	 function	𝑧(𝜃^) 	for	 a	
simulation	of	the	extended	Kuramoto	model.	

	
Qualitatively,	there	appeared	to	be	a	broad	tremor-suppressing	effect	at	120°-210°	
(Figure	20,	1st	row),	which	is	roughly	a	60°	phase	shift	from	the	tremor-suppressing	
effect	observed	in	the	experimental	data	at	240°	(Figure	10,	1st	row).	However,	
similar	to	the	experimental	data,	there	is	a	broad	peak	in	the	change	in	frequency	
and	phase	curves	that	includes	210°-270°	(Figure	20,	2nd	and	3rd	rows).	
	
The	Moore-Rayleigh	test	was	used	on	the	change	in	amplitude,	frequency,	and	phase	
curves	and	showed	significant	non-uniformity	in	all	curves	(𝑝 < 10�r).	The	phases	
Moore-Rayleigh	resultant	vectors	for	the	negative	change	in	amplitude,	change	in	
frequency,	and	change	in	phase	curves	was	156.1°,	258.1°,	and	255.5°	respectively.	
This	further	corroborates	the	qualitative	observations	that,	while	the	change	in	
frequency	and	phase	curves,	when	using	the	scaled,	change	in	frequency	curve	as	
the	PRC	function,	are	more	similar	to	that	of	the	experimental	data,	the	tremor-
suppressing	effect	is	now	no	longer	consistent	between	experimental	and	simulated	
data.	
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Figure	20:	Change	in	Amplitude,	Frequency,	and	Phase	Curves	of	Simulated	Data	using	Scaled,	

Experimental	Change	in	Frequency	Curve	(Figure	19)	as	PRC	Function	

The	change	in	amplitude	(in	m/s2),	∆𝑎	(1st	row),	frequency	(in	Hz),	∆𝑓	(2nd	row),	and	phase	(in	
degrees),	∆𝜃	(3rd	 row),	were	calculated	 for	all	108	simulated	blocks	and	plotted	above	 (red	
circles).	Linear	interpolations	of	the	median	∆𝑎, ∆𝑓,	and	∆𝜃	for	each	phase	of	stimulation	were	
plotted	(blue	lines)	along	with	the	standard	error.	The	median	change	in	amplitude,	frequency,	
and	phase	for	the	9	reference	blocks	of	no	stimulation	were	also	plotted	(orange	lines).	

	
From	correlation	coefficients	computed	between	median	change	in	amplitude	and	
the	derivative	approximations	of	the	median	change	in	frequency	and	phase	as	well	
as	those	computed	among	all	the	median	metrics,	high	correlative	effects	are	only	
observed	between	change	in	amplitude	and	the	derivative	approximations.	Thus,	
the	model	still	preserves	the	relationships	among	the	three	curves	as	shown	earlier.	
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Lastly,	while	using	this	PRC	function	appeared	to	align	the	change	in	frequency	and	
phase	curves	more	with	those	of	the	experimental	data,	there	was	no	significant	
correlation	between	any	of	the	experimental	and	simulated	curves	using	this	PRC	
function.	
	
Directly	Using	Scaled,	Experimental	Change	in	Phase	Curve	
The	scaled	linear	interpolation	of	the	experimental	change	in	phase	curve	(Figure	
10,	3rd	row)	was	also	used	in	a	simulation	(Figure	21).	
	

	
Figure	21:	Scaled,	Experimental	Change	in	Phase	Curve	as	PRC	Function	𝒛(𝜽𝒊)	for	Extended	Kuramoto	

Model	

The	linear	interpolation	of	the	change	in	phase	curve	from	the	experimental	data	(Figure	10,	
3rd	row)	was	scaled	to	range	from	 −1,+1 	and	used	as	the	PRC	function	𝑧(𝜃^)	for	a	simulation	
of	the	extended	Kuramoto	model.	

	
This	simulation	induced	a	tremor-suppressing	effect	at	120°	(Figure	22,	1st	row),	in	
contrast	to	the	tremor-suppressive	effect	at	240°	observed	in	the	experimental	data	
(Figure	10,	1st	row).	Furthermore,	its	change	in	frequency	and	phase	curves	(Figure	
22,	2nd	and	3rd	rows)	are	quite	noisy	and	flat.	Yet,	the	change	in	frequency	curve	at	
120°	(Figure	22,	2nd	row)	appears	to	adhere	to	the	traditional	Kuramoto	model	
explanation	of	optimal	tremor	suppression	at	the	positive,	zero-crossing	in	change	
in	phase.	
	



	 52	

Moore-Rayleigh	tests	demonstrate	significant	non-uniformity	in	all	curves	(𝑝 <
0.05),	with	the	phases	of	the	resultant	vectors	for	−∆𝑎,	∆𝑓,	and	∆𝜃	are	137.7°,	
226.2°,	and	215.9°	respectively.	The	latter	to	phases	are	within	10°-15°	to	the	
phases	of	the	resultant	vectors	for	statistical	tests	on	the	experimental	change	in	
frequency	and	phase	curves	(Table	1).	
	

	
Figure	22:	Change	in	Amplitude,	Frequency,	and	Phase	of	Simulated	Data	using	Scaled,	Experimental	

Change	in	Phase	Curve	(Figure	21)	as	PRC	Function	

The	change	in	amplitude	(in	m/s2),	∆𝑎	(1st	row),	frequency	(in	Hz),	∆𝑓	(2nd	row),	and	phase	(in	
degrees),	∆𝜃	(3rd	 row),	were	calculated	 for	all	108	simulated	blocks	and	plotted	above	 (red	
circles).	Linear	interpolations	of	the	median	∆𝑎, ∆𝑓,	and	∆𝜃	for	each	phase	of	stimulation	were	
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plotted	(blue	lines)	along	with	the	standard	error.	The	median	change	in	amplitude,	frequency,	
and	phase	for	the	9	reference	blocks	of	no	stimulation	were	also	plotted	(orange	lines).	

	
For	this	simulation,	there	were	no	significant	(𝑝 < 0.05)	correlations	between	the	
experimental	and	simulated	data.	There	were	also	no	significant	correlations	
between	the	median	change	in	amplitude	curve	and	the	median	change	in	frequency	
and	phase	curves	or	with	the	derivative	approximations	of	those	curves.	
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Discussion	
This	research	demonstrates	clinically	how	to	find	an	optimal	phase	at	which	phase-
locked	DBS	would	best	dampen	tremor	and	shows	computationally	how	a	classic	
neural	oscillator	model	fails	to	sufficiently	explain	the	optimal	strategy	in	an	
essential	tremor	patient.	As	clinical	research	progresses	to	demonstrate	the	
effectiveness	of	a	phase-dependent	DBS	strategy	in	a	variety	of	patients	with	
different	tremor-related	movement	disorders,	a	corresponding	theory	would	ideally	
be	developed	in	order	to	describe	why	phase-specific	DBS	effectively	dampens	
tremor.	This	section	first	summarizes	this	work’s	contributions	to	such	an	
understanding	and	then	proposes	further	integrated,	experimental	and	
computational	work	to	better	investigate	the	underlying	mechanisms	of	phasic	
stimulation.	
	

Summary	of	Results	
In	summary,	there	are	a	few	key	findings	from	this	work:	
	

- A	novel	paradigm	for	detecting	and	analyzing	phase-dependent	tremor-
suppression	in	both	experimental	and	simulated	data	was	presented.	

- A	new,	weighted	circular	test,	the	Scaled	Rayleigh	statistic,	was	outlined.	
- In	the	essential	tremor	patient	in	which	the	experimental	trial	was	

conducted,	significant	phase-dependent	tremor	suppression	around	240°-
270°	significantly	correlated	with	large	increases	in	frequency	and	phase,	
which	are	the	same	measure	calculated	using	different	methods	and	units.	

- From	Wilson	and	Moehlis,	2014,	tremor	suppression	should	correlate	with	
the	derivative	of	the	change	in	frequency	or	phase.	In	this	explanation,	
optimal	stimulation	would	desynchronize	two	oscillator	sub-populations	at	
the	mean	population	phase	at	which	change	in	frequency	or	phase	changes	
from	negative	to	positive,	thereby	causing	one	sub-population	to	slow	down	
and	the	other	to	speed	up.	However,	this	explanation	failed	to	explain	the	
direct,	correlation	between	change	in	tremor	amplitude	and	
frequency/phase	within	the	essential	tremor	patient.	

- There	is	evidence	of	a	non-linear	transform	between	the	individual	oscillator	
PRC	function	used	in	the	Kuramoto	model	and	the	oscillator	population’s	
mean	change	in	frequency	or	phase.	This	is	likely	because	of	weakly	coupled	
interactions	among	the	oscillator	population.	

		
This	research	is	the	first	known	work	to	analyze	the	Kuramoto	model’s	ability	to	
simulate	phase-dependent	tremor	suppression	in	comparison	with	clinical	tremor	
data.	
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Future	Work	

Quantify	Significant,	Phase-Specific	Tremor	Modulation	
In	the	single	essential	tremor	patient	in	which	the	phasic	DBS	experiment	was	
conducted,	there	appeared	to	be	small	dampening	effect	at	120°,	a	larger	
suppressive	effect	at	240°,	and	an	amplification	at	30°	(Figure	10,	1st	row).	Yet,	
without	reference	blocks	in	which	no	DBS	and/or	constant	130Hz	DBS	was	
administered,	the	significance	of	these	observed	effects	could	not	be	tested.	
Provided	said	reference	blocks,	a	paired	t-test	can	be	used	to	quantify	the	
significance	of	such	effects,	with	Bonferroni	correction	to	correct	for	multiple	
comparisons	among	12	phases.	
	
The	Moore-Rayleigh	and	Scaled	Rayleigh	statistics	tested	non-uniformity	of	
experimental	and	simulated	change	in	amplitude,	frequency,	and	phase	curves.	
However,	they	could	not	rigorously	identify	the	phases	at	which	there	was	
significant	tremor	modulation	or	change	in	frequency/phase;	the	phase	of	the	
resultant	vector	is	simply	a	weighted,	mean	phase	of	the	data	points.		
	 	

Model	Negative	Correlation	between	Change	in	Tremor	Amplitude	and	
Frequency/Phase	
While	this	work	provided	evidence	that	the	Kuramoto	model	fails	to	explain	the	
relationship	between	change	in	tremor	amplitude	and	frequency/phase	for	a	single	
essential	tremor	patient,	a	few	further	computational	experiments	and	extensions	
could	potentially	show	that	the	model	can	describe	this	phenomenon.	
	
Search	Model	Parameter	Space	
While	some	model	parameters	were	optimized	to	best	match	tremor	characteristics	
in	the	absence	of	DBS,	others	parameters,	i.e.	number	of	oscillators	(𝑁)	and	DBS	
strength	(𝛽),	were	chosen	a	priori.	Using	the	four	proposed	stimulation	functions,	
these	parameters,	and	possibly	the	previously	optimized	parameters	as	well,	should	
be	optimized	to	best	match	tremor	characteristics	of	phasic	DBS.	This	could	be	done	
by	finding	parameters	that	yield	the	best	fit	to	the	experimental	change	in	
amplitude,	frequency,	and	phase	curves.	Such	an	optimization	may	find	a	set	of	
parameters	that,	when	coupled	with	one	or	more	biologically-plausible	stimulation	
functions,	can	describe	the	direct,	negative	correlation	between	tremor	suppression	
and	frequency	amplification.	
	
Model	and	Understand	Multiple	Tremor-Inducing	Neural	Populations	
One	of	the	motivations	behind	the	presented,	biologically-plausible	stimulation	
functions	was	to	incorporate	the	understanding	that	both	the	sub-thalamic	nucleus	
(STN)	and	the	global	pallidus	interna	(GPi),	a	sub-cortical	region,	contribute	to	
tremor.	Typically,	DBS	electrodes	are	only	implanted	in	one	of	these	regions.	Yet,	
with	respect	to	phasic	DBS,	the	relationship	between	these	two	regions	and	their	
effect	on	tremor	has	not	been	thoroughly	researched.	A	phasic	DBS	primate	study	
can	be	used	to	investigate	their	interactions.	DBS	electrodes	can	be	implanted	in	
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either	the	SPN	or	GPi	while	recording	electrodes	are	inserted	into	both	regions.	
Then,	local	field	potentials	(LFPs)	in	both	regions	can	be	recorded	as	phasic	DBS	is	
administered	in	a	similar	set-up	to	the	one	used	in	this	work	(Cagnan	et	al.,	2016).	
DBS	would	likely	interfere	with	LFP	recordings;	thus,	recordings	from	short	non-
stimulated	periods	(i.e.	after	a	short	burst	of	phasic	DBS	has	been	administered)	can	
be	processed	and	used.	From	LFP	recordings,	the	mean	phase	of	both	neural	
populations	can	be	calculated	and	compared	to	each	other	as	well	as	the	tremor	
phase	recorded	by	a	hand-mounted	accelerometer.	These	multi-region	and	multi-
modal	phase	recordings	can	also	be	used	to	optimize	and	better	understand	the	
Kuramoto	model,	by	seeking	to	replicate	the	non-linear	transformation	from	the	
PRC	function,	which	can	be	estimated	by	LFPs	from	the	region	in	which	DBS	
electrodes	were	implanted,	to	the	change	in	tremor	phase	curve.	Specific	research	
should	be	focused	on	how	change	in	phase	curves	between	a	neural	population	and	
hand	tremor	relate	–	are	they	directly	correlated	or	is	one	correlated	to	the	
derivative	approximation	of	another?	–	and	how	the	Kuramoto	model	can	simulate	
the	relationship	between	a	neural	population	and	a	downstream	behavior	like	
tremor.	
	
Ideally	grounded	in	clinical	research	on	the	effect	of	phasic	DBS	on	the	relationships	
among	SPN,	GPi,	and	hand	tremor,	the	Kuramoto	model	can	be	extended	in	a	few	
ways	to	better	capture	the	interactions	between	SPN	and	GPi.	First,	the	coupling	
constant,	𝐾,	can	be	parameterized	and	made	to	vary	among	oscillators	in	an	effort	to	
model	how	a	neural	population’s	internal	coupling	(i.e.	neurons	within	SPN)	may	
differ	from	its	external	coupling	(i.e.	coupling	between	SPN	and	GPi	neurons).	
Second,	the	distribution	from	which	oscillator	frequencies	are	sampled	can	be	
changed	to	a	bi-modal	distribution,	to	reflect	that	the	neural	activity	of	different	
regions	may	have	different	frequencies.	The	frequency	characteristics	of	neural	
activity	in	STN	and	GPi	can	be	extracted	for	their	LFP	recordings	and	either	used	
directly	in	the	model	or	used	to	initialize	a	parameter	search	optimization.	Finally,	
the	relationships	among	STN,	GPi,	and	tremor	can	be	explicitly	described	by	
designing	different	architectures	of	Kuramoto	oscillator	populations	interacting	
with	one	another.	
	
Extend	the	Model	to	Explicitly	Incorporate	Change	in	Frequency	
The	Tass,	2003	formulation	of	the	Kuramoto	model	that	incorporates	DBS	has	four	
terms	that	describe	an	oscillator’s	1.	mean	frequency,	2.	coupled	relationship	with	
other	oscillators,	3.	noisiness,	and	4.	phase-dependent	response	to	DBS	(Equation	
16).	Another	term,	ℎ(𝜃^),	could	be	added	to	explicitly	capture	the	directly	inverse	
relationship	between	change	in	tremor	amplitude	and	frequency/phase.	This	term	
may	need	to	be	parameterized	by	not	only	the	oscillator’s	current	phase	but	also	a	
recent	history	of	its	previous	phases	in	order	to	approximate	its	change	in	phase.	
Then,	a	regularizing,	mixture	parameter,	𝛾,	can	also	be	added	(Equation	26)	to	
weight	how	much	the	model	explains	tremor	suppression	using	the	“slope”	
explanation	–	that	the	optimal	phase	at	which	to	stimulate	is	the	one	in	which	there	
is	a	positive-slope,	zero-crossing	change	in	an	individual	oscillator’s	PRC	(Wilson	
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and	Moehlis,	2014)	–	versus	the	“peak”	explanation	–	that	the	optimal	phase	is	the	
one	in	which	there	is	a	maximum	peak	in	an	individual	oscillator’s	PRC.	These	
explanations	assume	that	a	change	in	hand	tremor	frequency	curve	is	similar	to	an	
individual	oscillator’s	PRC,	a	simplification	that	this	work	shows	is	problematic	and	
that	needs	to	be	further	investigated	as	well	(see	“Non-Linear	Transformation	from	
Individual	PRC	to	Change	in	Mean	Phase	of	Oscillator	Population	
Non-Linear	Transformation	from	Individual	PRC	to	Change	in	Mean	Phase	of	
Oscillator	Population”).	
	 	
𝜃^ ← 𝜃^ + 𝑑𝑡 𝜔^ + 𝐾𝑟 sin 𝜓 − 𝜃^ + 𝛼𝒩 0, 𝑑𝑡 + 𝛾𝛽𝑧 𝜃^ 𝑢^ 𝑡 + (1 − 𝛾)ℎ(𝜃^)	

Equation	26:	Proposed	Extension	to	Kuramoto	Model’s	Update	Rule	

	
Develop	Another	Model	that	Incorporates	Excitatory-Inhibitory	Dynamics	
The	Kuramoto	model	makes	several	strong	assumptions	that	may	contribute	to	its	
inability	to	describe	the	experimental	results	observed.	For	instance,	it	assumes	that	
spiking	is	relatively	constant	with	its	fixed	angular	frequency	term,	thereby	
eliminating	the	possibility	of	bursting	neurons	or	neurons	modulated	by	inhibition.	
If	the	above	research	directions	using	the	Kuramoto	model	prove	futile,	another,	
more	complex	model,	such	as	one	that	capture	excitatory-inhibitory	dynamics,	may	
need	to	be	developed.	
	

Describe	Phase-dependent	DBS	Strategy	for	Different	Tremulous	Pathologies	and	
Patients	
A	major	limitation	of	this	work	is	the	sample	size	of	one	essential	tremor	patient.	
The	experimental	trial	was	conducted	in	several	essential	and	dystonic	tremor	
patients	(Cagnan	et	al.,	2016).	A	preliminary	analysis	of	the	experimental	data	from	
other	patients	suggests	that	different	patients	may	have	different	optimal	phasic	
DBS	strategies:	the	change	in	frequency/phase	curves	of	a	few	patients	seem	to	fit	
the	“slope”	explanation	while	those	of	other	patients	seem	to	be	more	consistent	
with	the	“peak”	explanation	observed	in	this	work’s	analysis	of	tremors	from	a	
single	essential	tremor	patient.	Due	to	time	constraints,	multi-patient	analysis	was	
not	able	to	be	adequately	conducted	and	included	in	this	work.	Further	clinical	
research	should	include	multiple	patients	with	a	variety	of	tremor-inducing	
disorders,	while	future	computational	work	should	be	done	in	close	collaboration	
with	experimental	work	so	as	to	be	able	to	model	different	kinds	of	phase-
dependent,	tremor-suppressing	effects	that	may	vary	by	patient	and/or	pathology.	
	
If	such	a	biologically-consistent	model	were	to	be	developed,	if	even	for	one	specific	
movement	disorder,	it	could	then	be	used	to	identify	new	optimal	phase-dependent	
DBS	strategies.	For	example,	a	parameter	search	could	be	conducted	to	find	the	
smallest	DBS	strength	parameter,	lowest	DBS	frequency,	and/or	the	shortest	
duration	of	phasic	DBS	administration	that	could	still	yield	effective	tremor	
suppression.	In	this	work,	these	parameters	were	set	a	priori	as	follows:	DBS	
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strength	(𝛽 = 0.05),	DBS	frequency	(130	Hz),	duration	of	BDS	(35	ms	–	this	
corresponded	to	6	pulses	at	130	Hz).	 	
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Conclusion	
This	research	was	the	first	known	work	of	its	kind	in	its	dual,	interdisciplinary	
mission	to	identify	an	experimentally	optimal	tremor	phase-locked	DBS	strategy	in	a	
single	essential	tremor	patient	as	well	as	to	explain	computationally	how	phasic	DBS	
might	desynchronize	a	neural	population	and	thus	dampen	tremor.	While	a	
coherent,	underlying	mechanism	that	can	comprehensively	explain	the	tremor-
suppressing	effects	of	phasic	DBS	in	the	tested	essential	tremor	patient	is	still	
unknown,	this	work	nonetheless	made	contributions	to	this	goal	as	well	as	to	the	
fields	of	statistics	and	computational	neuroscience,	by	presenting	a	new,	weighted	
circular	statistic,	the	scaled	Rayleigh	test,	implementing	more	biologically-plausible	
stimulation	functions	to	be	used	in	the	Kuramoto	model,	and	highlighting	several	
shortcomings	of	the	model.	Finally,	this	dissertation	proposes	future	directions	of	
research	that	contribute	to	the	growing	body	of	work	to	develop	energy-efficient	yet	
effective	closed-loop	DBS	therapies.	
	
This	work	would	not	have	been	possible	without	the	support	and	collaboration	of	
Professor	Rafal	Bogacz,	Dr.	Hayriye	Cagnan,	and	Dr.	Gihan	Weerasinghe.		 	
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Appendix	1:	Alternative	Metrics	of	Evaluating	Effects	of	Tremor	
Suppression	
	
Alternative	metrics	were	developed	for	calculating	change	in	amplitude,	frequency,	
and	phase.	A	summary	of	them	will	be	presented	followed	by	an	explanation	of	each	
metric.	

Change	in	Amplitude	
The	results	reported	in	this	dissertation	use	the	change	in	amplitude	metric	given	by	
Equation	4.	However,	10	alternative	metrics	were	developed.	The	p-values	and	
phases	of	their	result	vectors	from	the	Moore-Rayleigh	and	Scaled	Rayleigh	tests	are	
provided	in	Table	9.	
	
The	mean	phase	of	the	result	vector	for	all	tests	for	which	the	p	<	0.05	threshold	was	
met	(bolded	in	Table	9)	was	69.8°,	with	a	standard	deviation	of	8.7°.	This	is	the	
diametric	opposite	of	249.8°.	
	
	 p-value	 Phase	of	resultant	

vector	
	 Moore-

Rayleigh	
Scaled	
Rayleigh	

Moore-
Rayleigh	

Scaled	
Rayleigh	

'subtract_last_block'	 0.0137	 0.0277	 75.1°	 82.8°	
'subtract_last_block_norm'	 0.0165	 0.9239	 73.4°	 147.5°	
'point_normalize'	 0.205	 0.7449	 49.0°	 13.7°	
'simple_median'	 0.4424	 0.4246	 103.7°	 117.1°	
'normalize'	 0.2393	 0.0521	 64.1°	 359.6°	
'subtract_prev'	 0.0002	 𝟏𝟎�𝟒	 61.5°	 61.4°	
'subtract_prev_norm'	 𝟏𝟎�𝟒	 0.2002	 64.4°	 24.8°	
'regression'	 0.6202	 0.5376	 143.9°	 148.4°	
'poly2_latent'	 0.079	 0.0586	 109.9°	 111.7°	
'poly2_diff'	 0.6846	 0.814	 101.8°	 126.7°	
Table	9:	Statistical	Significance	of	Alternative	Metrics	Measuring	Change	in	Amplitude	in	Experimental	

Data	

Tests	 of	 metrics	 for	 which	 the	 p	 <	 0.05	 threshold	 was	 met	 are	 bolded.	 Using	 Bonferroni	
correction	 (𝛼 = 10),	 the	 adjusted	 threshold	 to	 meet	 is	 p	 <	 0.005;	 the	 tests	 that	 meet	 the	
multiple	comparisons	threshold	are	underlined.	

	

Change	in	Frequency	&	Phase	
The	results	reported	in	this	dissertation	use	the	change	in	frequency	and	phase	
metrics	given	by	Equation	4	and	Equation	11	respectively.	However,	8	alternative	
metrics	–	2	for	change	in	phase	and	6	for	change	in	frequency	–	were	developed.	
Furthermore,	there	were	2	methods	for	calculating	the	frequency	for	a	period:	1.	
using	the	median	of	the	instantaneous	frequency,	and	2.	estimating	frequency	from	
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the	number	of	zero-crossings	in	tremor	amplitude.	The	p-values	from	the	Moore-
Rayleigh	and	Scaled	Rayleigh	tests	are	provided	in	Table	10.	
	
The	mean	phase	of	the	result	vector	for	all	tests	for	which	the	p	<	0.05	threshold	was	
met	(bolded	in	Table	9)	was	267.2	°,	with	a	standard	deviation	of	16.2°.	
	
	
	 p-value	
	 Moore-Rayleigh	 Scaled	Rayleigh	
'prc_point_normalize'	(inst)	 0.004	 0.0026	
'prc_point_normalize'	(zc)	 0.0039	 0.0146	
'prc_first_last_median'(inst)	 0.0034	 0.0016	
'prc_first_last_median'(zc)	 0.0026	 0.0111	
'subtract_last_block'(inst)	 0.0174	 0.1019	
'subtract_last_block'	(zc)	 0.0002	 𝟏𝟎�𝟒	
'subtract_last_block_norm'(inst)	 0.0164	 0.1112	
'subtract_last_block_norm'	(zc)	 0.0002	 0.0002	
'simple_median'(inst)	 0.0992	 0.0396	
'simple_median'	(zc)	 0.0386	 0.0319	
'normalize'(inst)	 0.3488	 0.4537	
'normalize'	(zc)	 0.2842	 0.2606	
'subtract_prev'(inst)	 0.0019	 0.0014	
'subtract_prev'	(zc)	 0.004	 0.0132	
'subtract_prev_norm'(inst)	 0.0018	 0.0019	
'subtract_prev_norm'	(zc)	 0.0036	 0.018	
Table	10:	Statistical	Significance	of	Alternative	Metrics	Measuring	Change	in	Frequency	and	Phase	in	

Experimental	Data	

Tests	 of	 metrics	 for	 which	 the	 p	 <	 0.05	 threshold	 was	 met	 are	 bolded.	 Using	 Bonferroni	
correction	 (𝛼 = 16),	 the	 adjusted	 threshold	 to	meet	 is	 p	 <	 0.0031;	 the	 tests	 that	meet	 the	
multiple	comparisons	threshold	are	underlined.	“inst”	denotes	metrics	that	used	instantaneous	
frequency;	“zc”	denotes	those	that	used	the	zero-crossing	method	to	calculate	frequency.	

Alternative	Metrics	

'subtract_last_block'	
Used	for	change	in	amplitude	and	frequency,	this	metric	took	the	difference	
between	the	median	amplitude	or	instantaneous	frequency	(or	zero-crossing	
estimate	of	the	frequency)	over	the	whole	5-second	period	of	the	current	block	and	
that	of	the	previous	block.	If	there	was	no	prior	block,	the	median	amplitude	or	
frequency	(or	zero-crossing	estimate)	was	calculated	for	the	1-second	no-
stimulation	period	immediately	preceding	the	current	5-second	block.	
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'subtract_last_block_norm'	
Used	for	change	in	amplitude	and	frequency,	this	metric	normalized	the	
‘subtract_last_phase’	metric	by	dividing	it	by	the	median	amplitude	or	frequency	(or	
zero-crossing	estimate)	of	the	previous	block.	

'point_normalize'	
Used	for	change	in	amplitude,	this	metric	took	the	difference	between	the	amplitude	
at	the	end	of	the	current	block	(t	=	5s)	and	the	amplitude	at	the	beginning	of	the	
current	block	(t	=	0s)	and	normalized	this	difference	by	the	latter	term.	

'simple_median'	
Used	for	change	in	amplitude	and	frequency,	this	metric	was	simply	the	median	of	
the	amplitude	or	instantaneous	frequency	(or	zero-crossing	estimate	of	frequency)	
over	the	whole	5-second	period	of	the	current	block.		

'normalize'	
Used	for	change	in	amplitude	and	frequency,	this	metric	took	the	difference	
between	the	median	amplitude	or	instantaneous	frequency	(or	zero-crossing	
estimate	of	frequency)	of	the	last	second	of	the	current	block	(t	=	4-5s)	and	that	of	
the	first	second	of	the	current	block	(t	=	0-1s)	and	normalized	this	difference	by	the	
latter	term.	

'subtract_prev'	
Used	for	change	in	amplitude	and	frequency,	this	metric	took	the	difference	
between	the	median	amplitude	or	instantaneous	frequency	(or	zero-crossing	
estimate	of	frequency)	of	the	whole	5-second	period	of	the	current	block	and	that	of	
the	1-second,	no-stimulation	period	immediately	preceding	it.	

'subtract_prev_norm'	
Used	for	change	in	amplitude	and	frequency,	this	metric	normalized	the	
‘subtract_prev’	metric	by	dividing	it	by	the	median	amplitude	or	instantaneous	
frequency	(or	zero-crossing	estimate	of	frequency)	of	the	1-second,	no-stimulation	
period	immediately	preceding	it.	

'regression'	
Used	for	change	in	amplitude,	this	metric	was	the	slope	of	a	line	fitted	to	the	tremor	
amplitude	values	for	the	whole	5-second	period	of	the	current	block.		

'poly2_latent'	
Used	for	change	in	amplitude,	this	metric	was	the	time	step	at	which	a	quadratic	line	
fit	to	the	tremor	amplitude	values	for	the	whole	5-second	period	of	the	current	
block	was	a	minimum	or	maximum	point.	

'poly2_diff'	
Used	for	change	in	amplitude,	this	metric	was	the	difference	between	the	minimum	
or	maximum	point	from	a	fitted	quadratic	line	to	the	tremor	amplitude	values	for	
the	whole	5-second	period	of	the	current	block	and	the	midpoint	value	between	the	
tremor	amplitude	values	at	the	beginning	(t	=	0s)	and	end	(t	=	5s)	of	the	block.	
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'prc_point_normalize'		
Used	for	change	in	phase,	this	metric	took	the	difference	between	the	unwrapped	
phase	at	the	end	of	the	5-second	period	of	the	current	block	(t	=	5s)	and	the	
projected,	unwrapped	phase	based	on	the	median	frequency	(or	zero-crossing	
estimate)	of	the	previous	block	and	normalized	it	by	time	(5	seconds)	and	by	the	
length	of	a	cycle	(2𝜋).	If	there	was	no	previous	block,	the	1-second,	no-stimulation	
period	immediately	preceding	the	current	block	was	used	as	the	reference	signal	
instead.	The	only	difference	between	this	metric	and	the	one	used	in	this	
dissertation	was	the	reference	frequency;	for	the	default	change	in	phase	metric,	the	
reference	frequency	was	the	median	instantaneous	frequency	of	the	1-second,	no-
stimulation	period	immediately	preceding	the	current	block.  

'prc_first_last_median'	
Used	for	change	in	phase,	this	metric	is	similar	to	the	previous	metric,	except	it	used	
the	median	unwrapped	phase	of	the	last	100ms	second	of	the	current	block	(t	=	4.9-
5s)	and	the	projected,	unwrapped	phase	of	the	same	100ms	period	using	the	
previous	block’s	frequency	as	the	reference	frequency.	
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Appendix	2:	Simulated	Change	in	Phase	Curves	with	Different	
Numbers	of	Oscillators	
Figure	23	shows	how	the	oscillator	population’s	change	in	phase	curve	diverges	
more	from	the	individual	PRC	function,	𝑧(𝜃^) = cos(𝜃^ +

�
�
),	as	the	number	of	

oscillators	increases.	
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Figure	23:	Change	in	Phase	Curve	for	Simulated	Data	when	Different	Numbers	of	Oscillators	(N	=	2,	5,	8)	
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The	 change	 in	 phase,	∆𝜃 ,	 was	 calculated	 for	 all	 108	 simulated	 blocks	 generated	 in	 each	
simulation	using	the	2	oscillators	(1st	row),	5	oscillators	(2nd	row),	and	8	oscillators	(3rd	row)	
respectively	 and	 plotted	 above	 (red	 circles).	When	 using	N	=	 2,	 5,	 and	 8	 oscillators,	 linear	
interpolations	of	 the	median	∆𝜃	for	each	phase	of	 stimulation	are	plotted	 (blue	 lines)	along	
with	the	standard	error.	The	median	change	in	phase	values	for	the	9	reference	blocks	of	no	
stimulation	are	also	plotted	(orange	lines).	
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Appendix	3:	Different	Stimulation	Functions	
The	change	in	frequency	(Figure	24)	and	phase	curves	(Figure	25)	for	simulations	
using	the	“half”,	“random”,	and	“uniform”	stimulation	functions	are	included	here.	
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Figure	24:	Change	in	Frequency	Curves	for	Simulated	Data	when	using	“Half”,	“Random”,	and	“Mixture”	

Stimulation	functions	
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The	change	 in	 frequency,	∆𝑓,	was	calculated	 for	all	108	simulated	blocks	generated	 in	each	
simulation	using	the	“Half”	(1st	row),	“Random”	(2nd	row),	and	“Mixture”	(3rd	row)	stimulation	
function	and	plotted	above	(red	circles).	When	using	each	of	these	stimulation	functions,	linear	
interpolations	of	 the	median	∆𝑓	for	each	phase	of	 stimulation	are	plotted	 (blue	 lines)	along	
with	the	standard	error.	The	median	change	in	frequency	values	for	the	9	reference	blocks	of	
no	stimulation	are	also	plotted	(orange	lines).	
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Figure	25:	Change	in	Phase	Curves	for	Simulated	Data	when	using	“Half”,	“Random”,	and	“Mixture”	

Stimulation	functions	
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The	 change	 in	 phase,	∆𝜃 ,	 was	 calculated	 for	 all	 108	 simulated	 blocks	 generated	 in	 each	
simulation	using	the	“Half”	(1st	row),	“Random”	(2nd	row),	and	“Mixture”	(3rd	row)	stimulation	
function	and	plotted	above	(red	circles).	When	using	each	of	these	stimulation	functions,	linear	
interpolations	of	 the	median	∆𝜃	for	each	phase	of	 stimulation	are	plotted	 (blue	 lines)	along	
with	the	standard	error.	The	median	change	in	phase	values	for	the	9	reference	blocks	of	no	
stimulation	are	also	plotted	(orange	lines).	
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Appendix	4:	Extended	Kuramoto	Model	Simulation	Tool	
A	web	simulation	of	the	Kuramoto	neural	oscillators	was	developed	to	be	used	in	a	
public	engagement	event	with	local	Oxfordshire	high	school	students.	It	can	be	used	
as	a	game,	in	which	users	earn	points	by	desynchronizing	a	population	of	Kuramoto	
neural	oscillators,	to	intuitively	teach	the	optimal	phase-dependent	DBS	strategy	
that	the	Kuramoto	model	suggests	(i.e.	stimulating	at	the	positive	zero-crossing	in	
the	PRC	function).	It	can	also	be	used	as	a	research	and	visualization	tool,	where	
nearly	all	the	Kuramoto	simulation	parameters	can	be	set	by	the	user,	including	a	
phasic	stimulation	strategy.	The	user	can	then	observe	the	state	of	the	neural	
oscillator	population,	its	synchrony,	and	the	tremor	signal	as	the	simulation	runs	
with	the	user-specified	model	parameters.	
	
The	simulation	tool	can	be	accessed	at	this	link:	
http://ruthcfong.github.io/kuramoto.	
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Figure	26:	Screenshot	of	Simulation	Tool	

	


