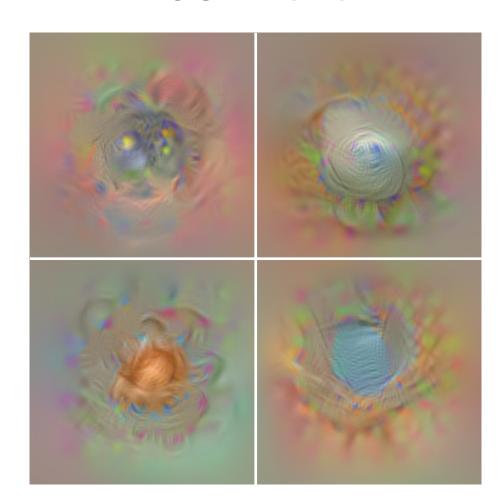
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks

Ruth Fong and Andrea Vedaldi

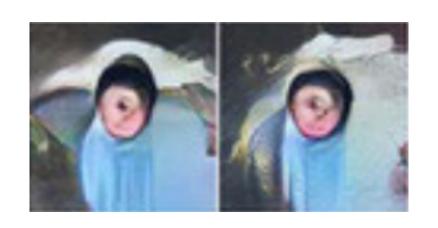
Filter Visualizations

Zeiler & Fergus, ECCV 2014

Mahendran and Vedaldi, IJCV 2016



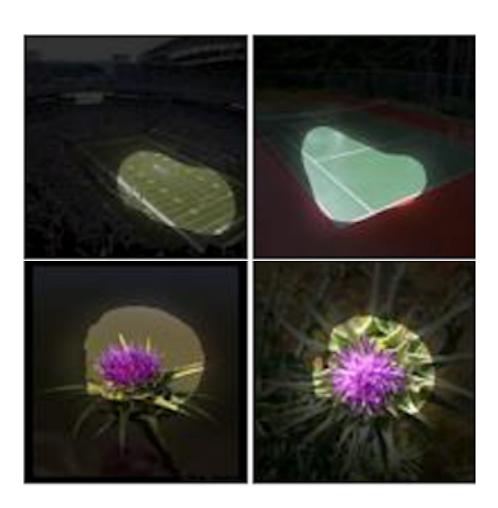
Nyugen et al., NIPS 2016



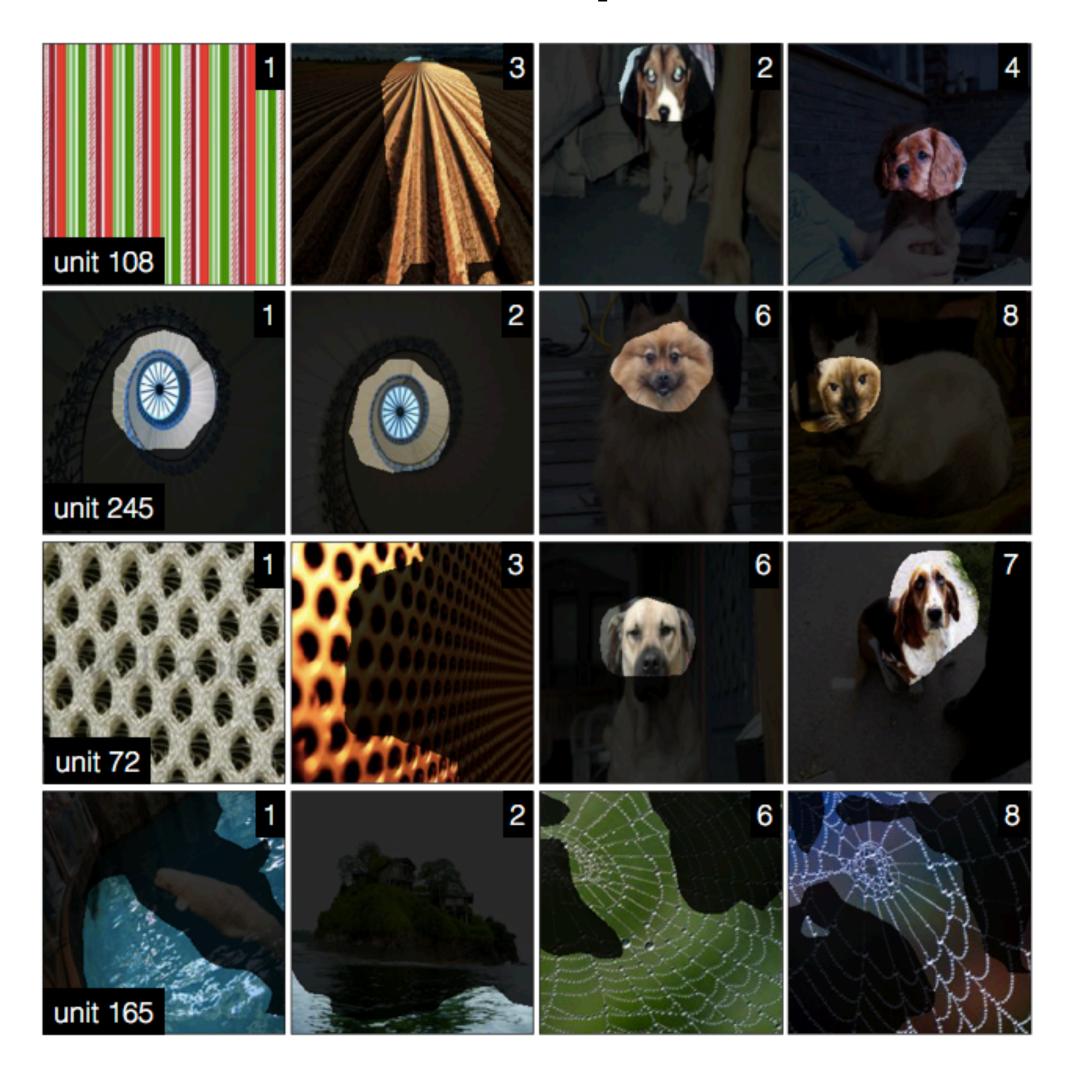
Olah et al., Distill 2017

Zhou et al., ICLR 2015

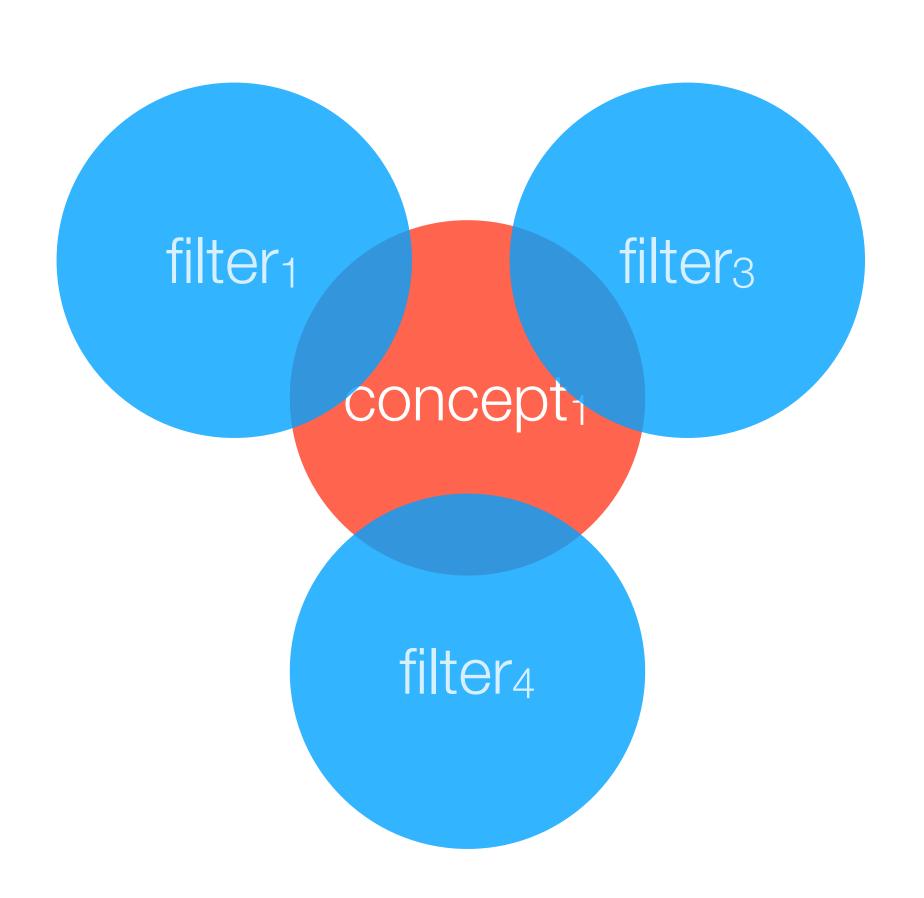
Bau et al., CVPR 2017

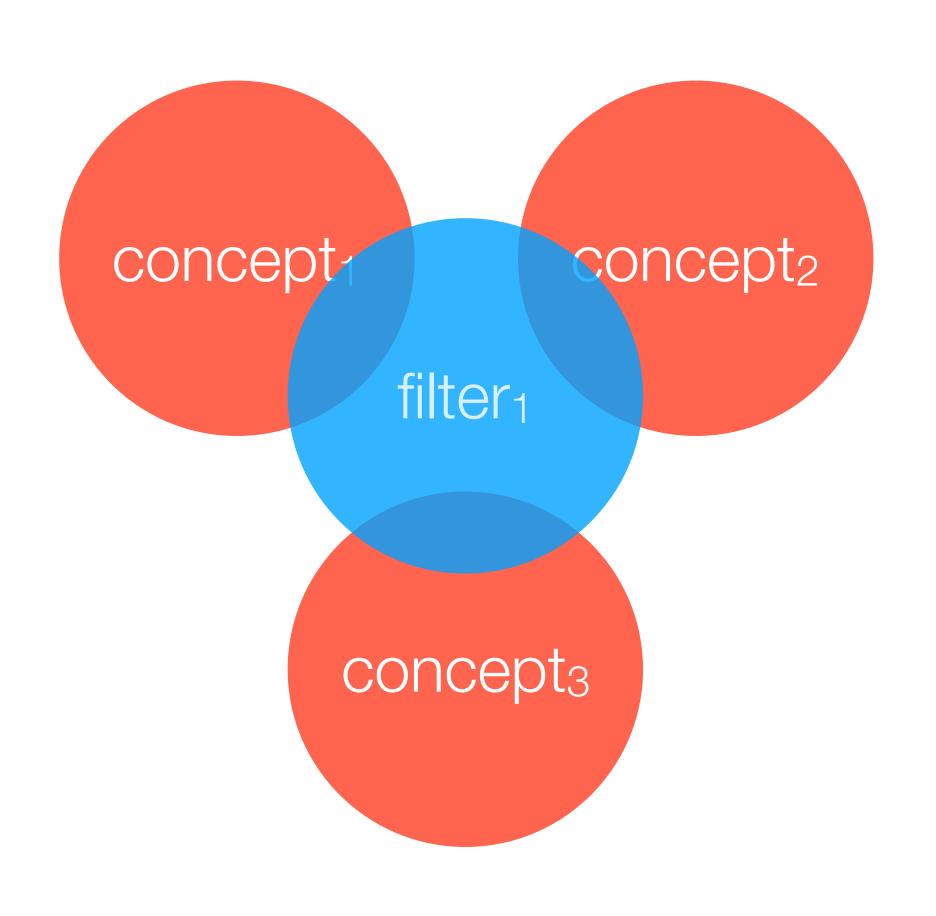


Filter-Concept Overlap



Filter-Concept Overlap





Method

Probe a **network** with a **dataset** and learn to perform a **task** using **activations** at a given layer.

BRODEN Dataset

Image-level Annotations

Pixel-level Annotations

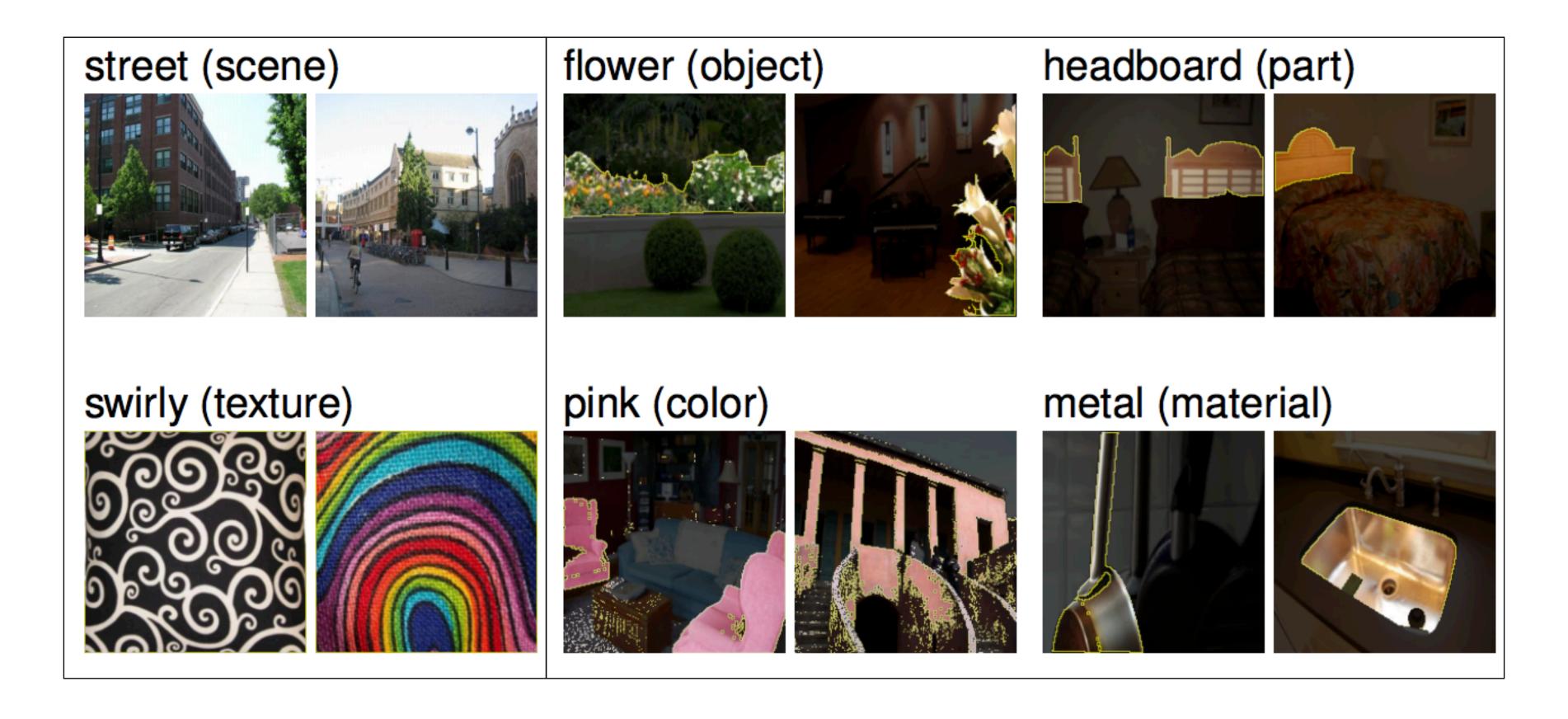
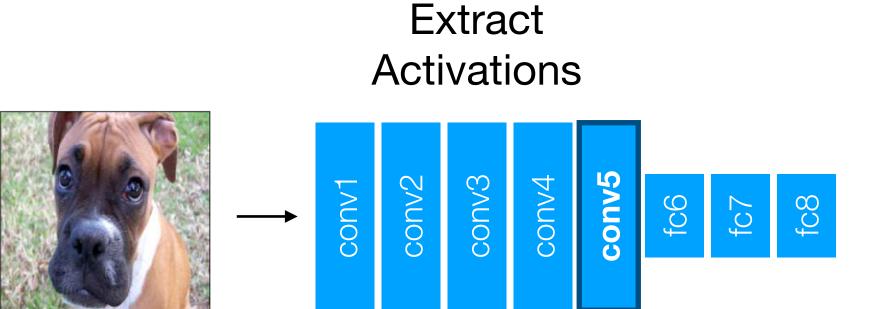
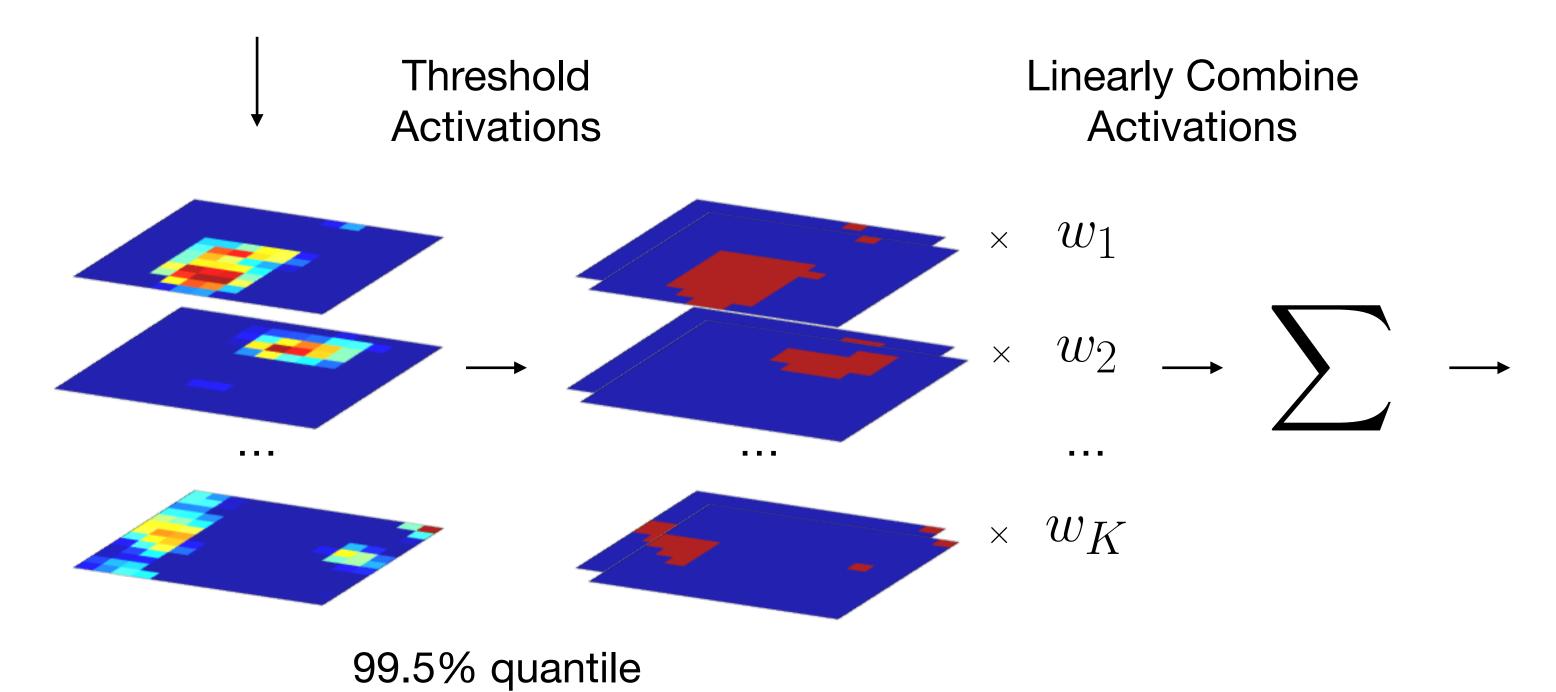


Figure 1 from Bau, et al., 2017

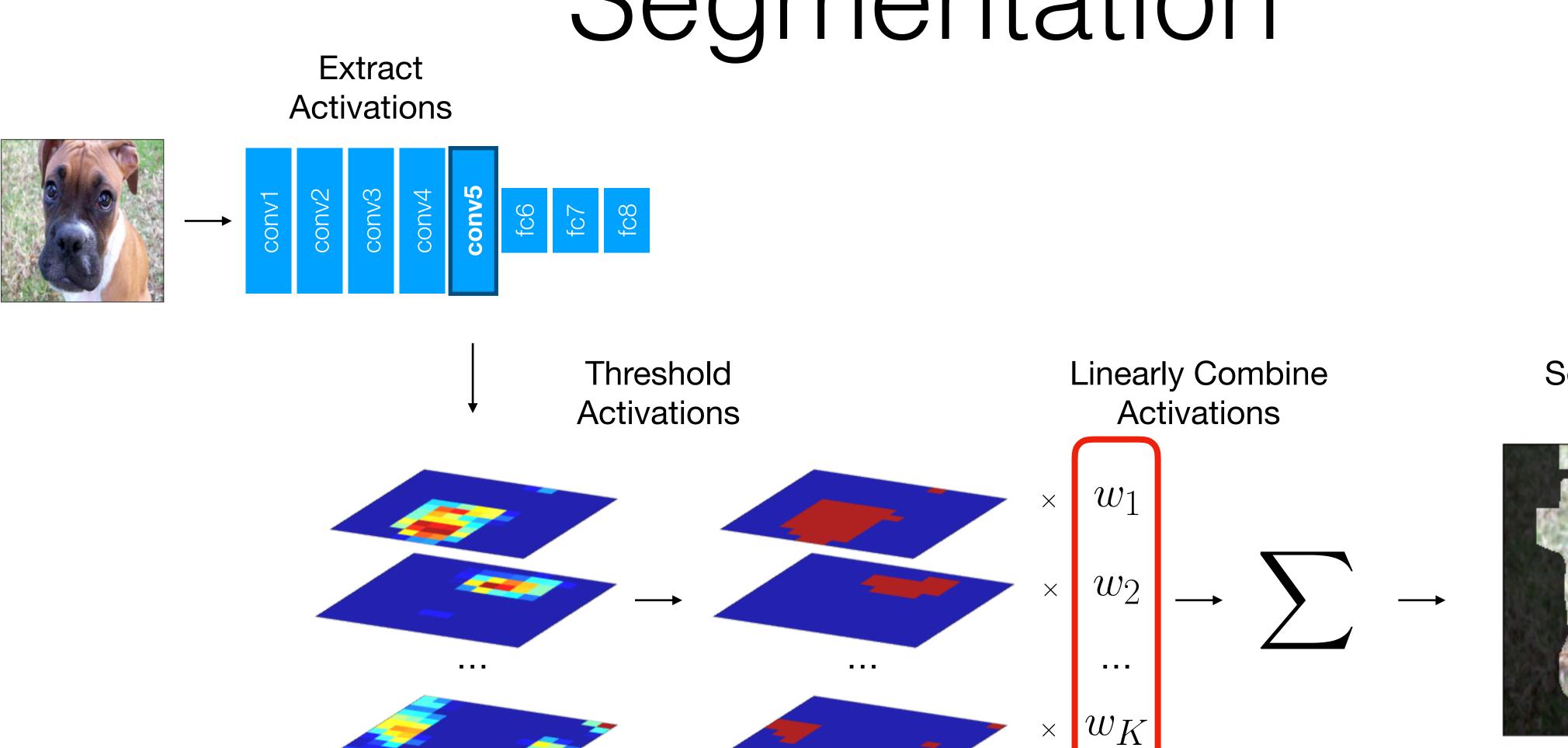




as in Bau et al., 2017

Segmentation Mask

IoU = .77



99.5% quantile as in Bau et al., 2017

Concept Vector

 \mathbf{w}_{dog}

Segmentation Mask

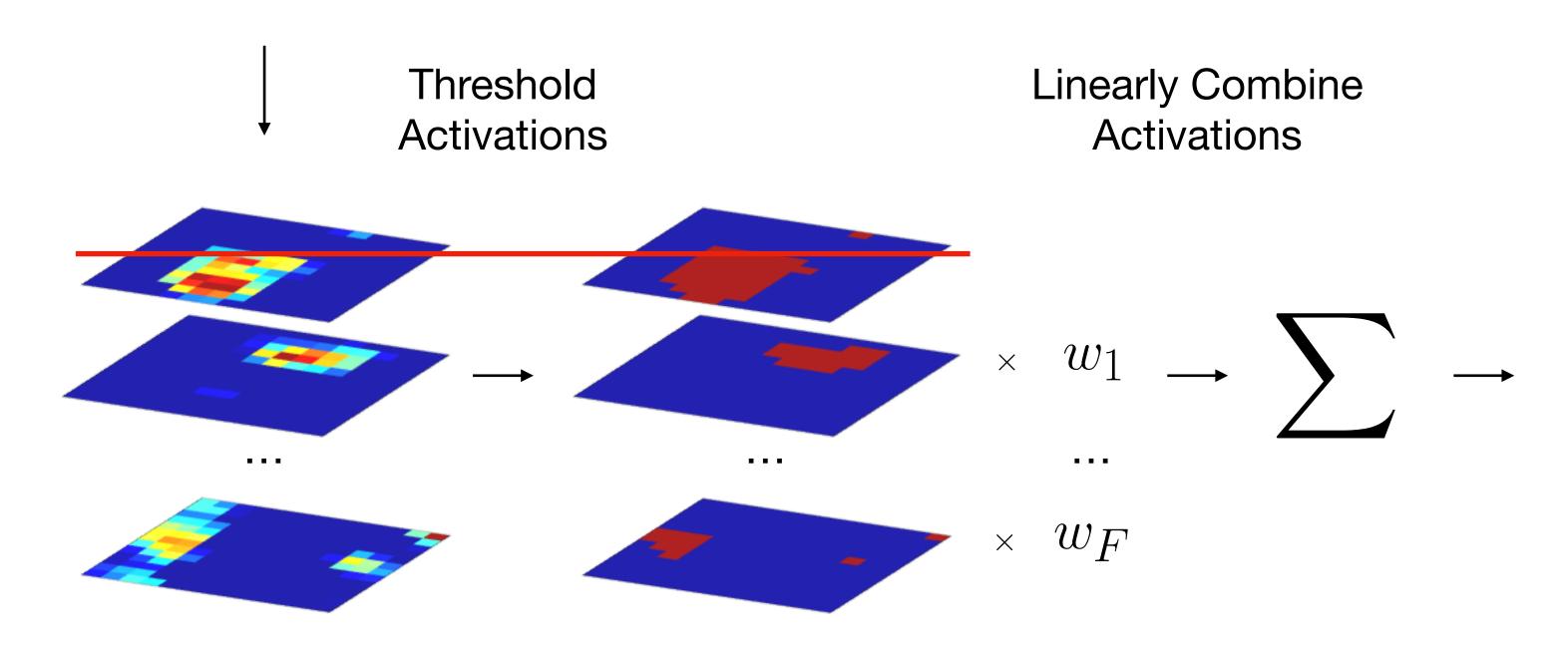


IoU = .77

$$\mathbf{w}_{dog,F} = \begin{bmatrix} w_1 \\ \dots \\ w_F \end{bmatrix}$$

Subset:
Only use top
$$F$$
 filters,
chosen by magnitude
 $(F = 4)$

Subset selection follows Agrawal et al., 2014



Segmentation Mask



IoU = .63

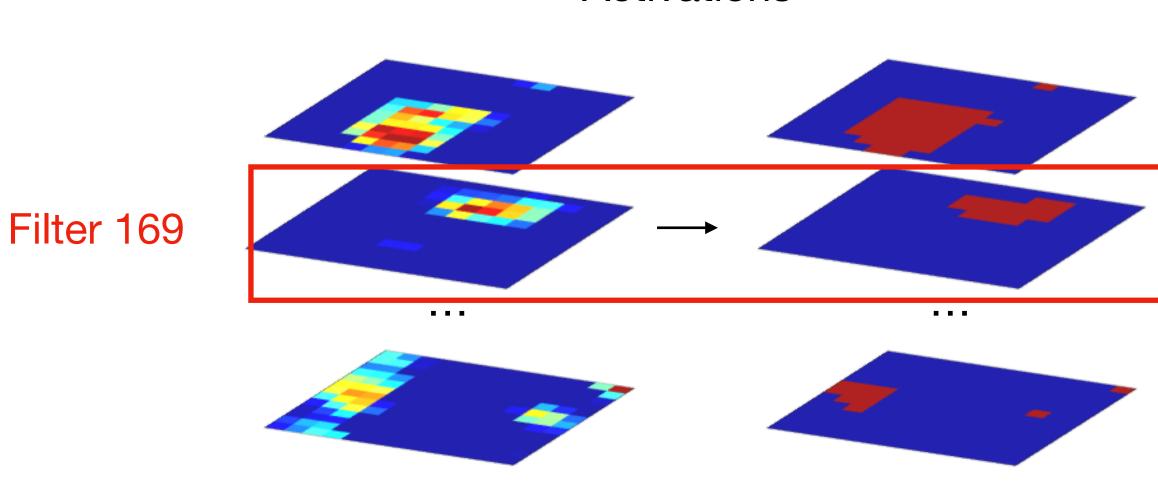
Single Filter



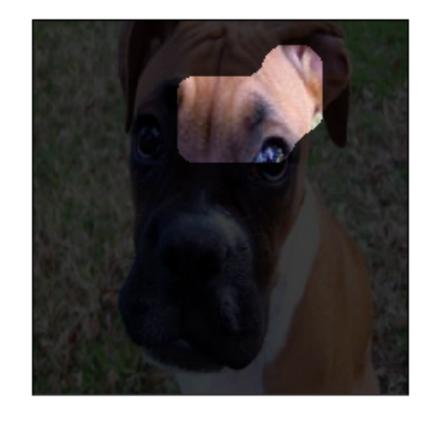
$$IoU_{set}(c; M, s) = \frac{\sum_{\mathbf{x} \in X_{s,c}} |M(\mathbf{x}) \cap L_c(\mathbf{x})|}{\sum_{\mathbf{x} \in X_{s,c}} |M(\mathbf{x}) \cup L_c(\mathbf{x})|}$$

$$IoU_{ind}(\mathbf{x}, c; M) = \frac{|M(\mathbf{x}) \cap L_c(\mathbf{x})|}{|M(\mathbf{x}) \cup L_c(\mathbf{x})|}$$

Threshold Activations



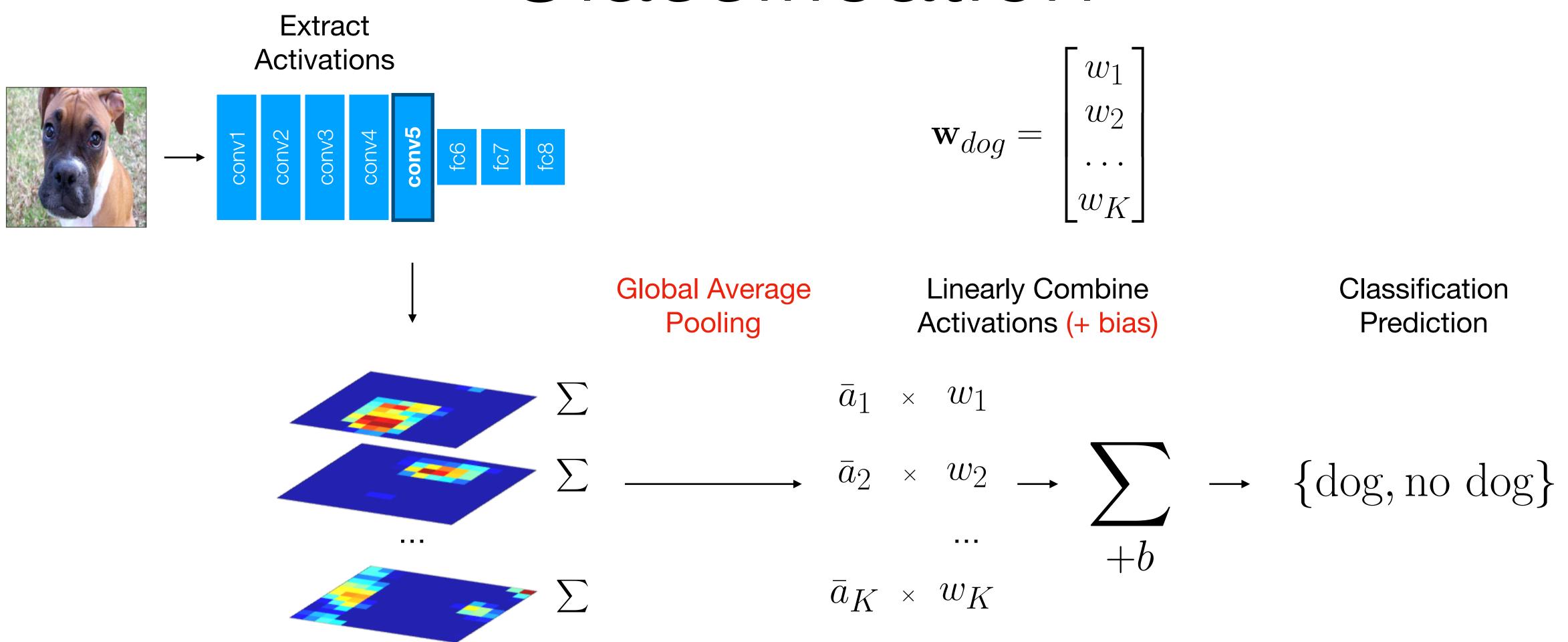
Choose Best Filter Segmentation Mask



IoU = .18

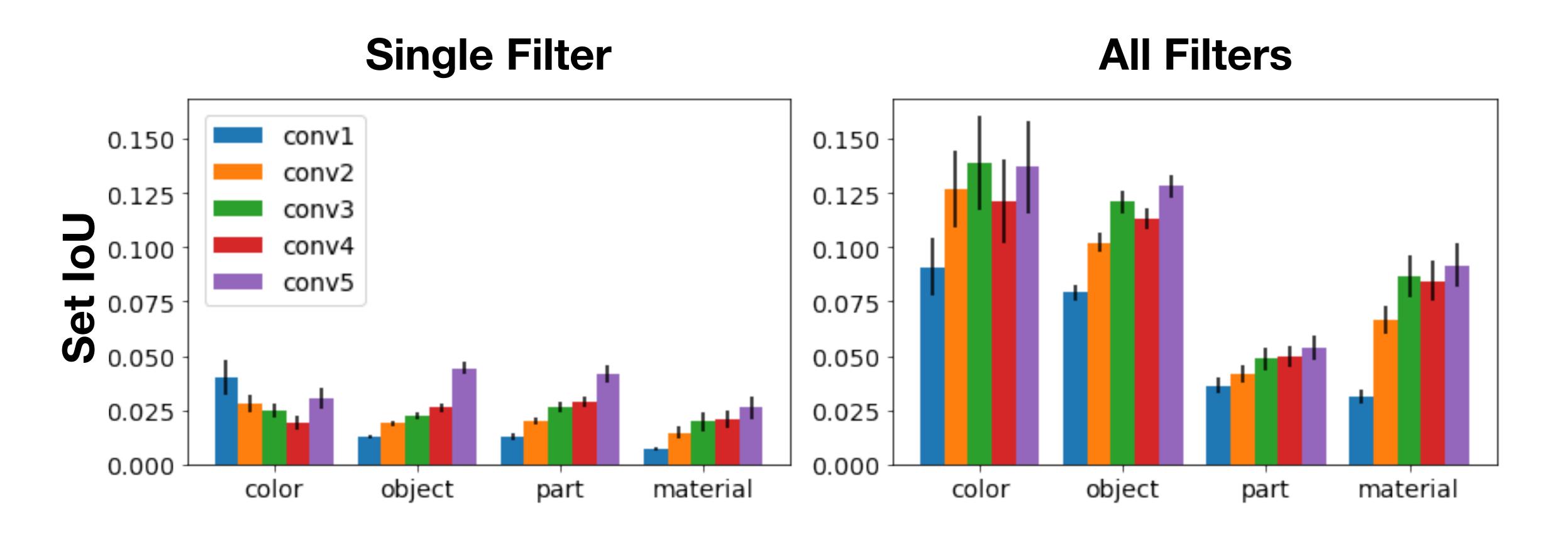
Near equivalent to Bau et al., 2017

Classification



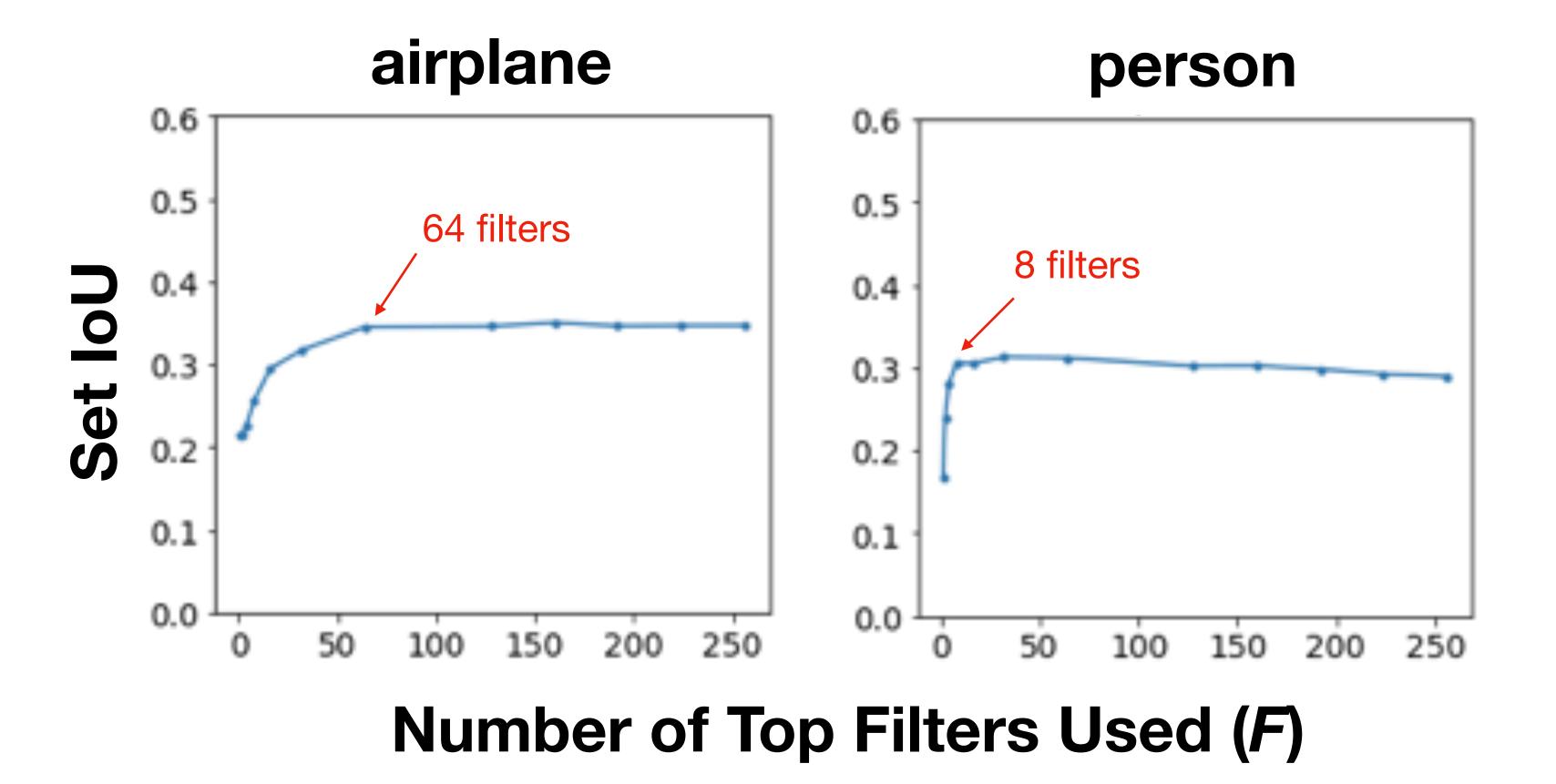
A Few Results

Single vs. All Filters



Concepts are encoded better when using multiple filters.

Filters Per Concept



Different concepts require different number of filters for encoding.

Filters: Supervised vs. Self-Supervised

Performance Improvement (Single Filter → All Filters):

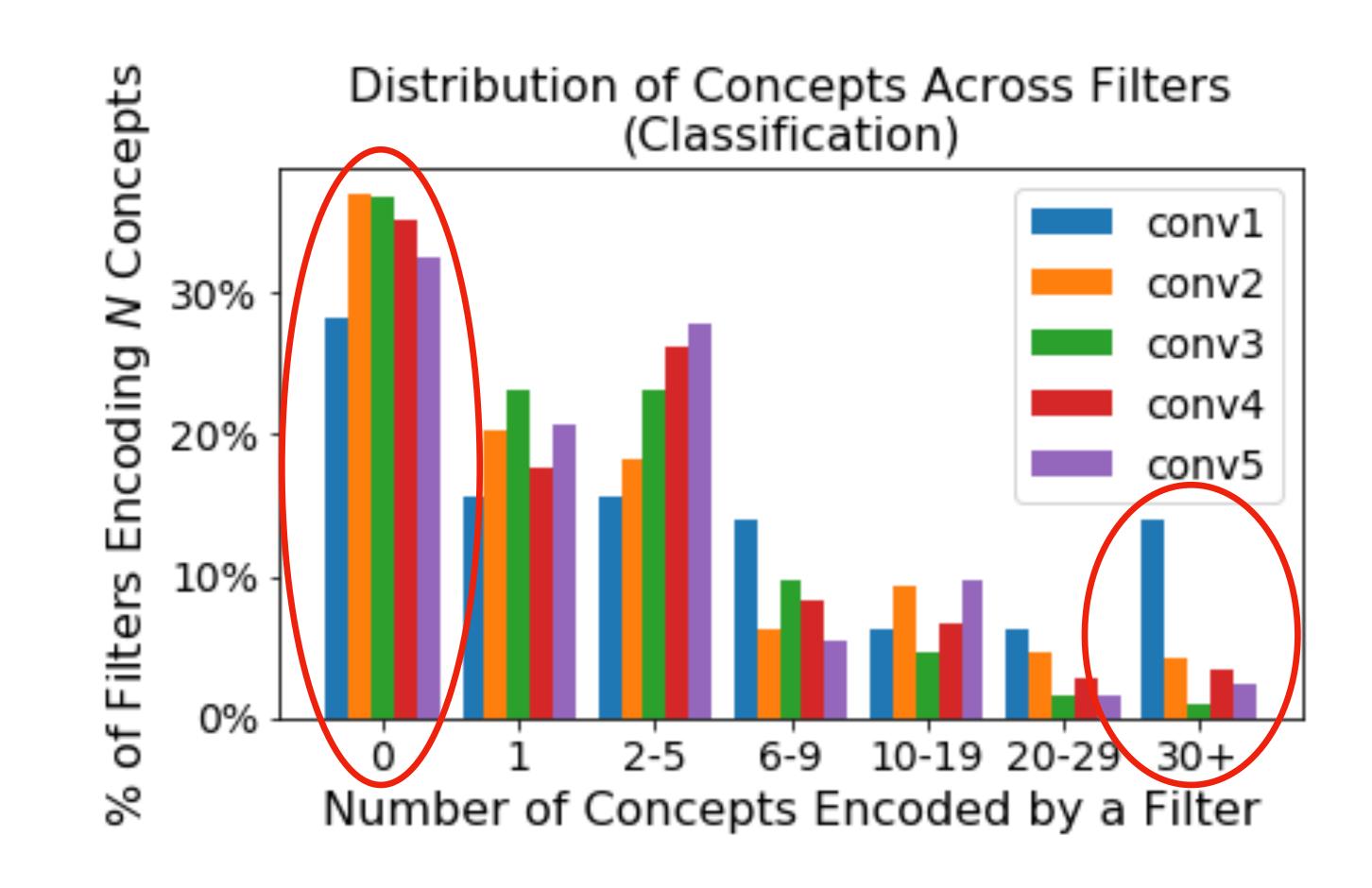
- Self-supervised networks: 5-6x
- Fully-supervised networks: 2-4x

Self-supervised networks encode BRODEN concepts more distributively.

Concepts per Filters

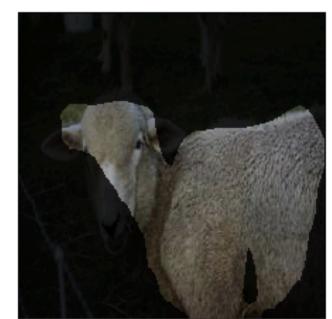
Found a wide range in filter capacity to encode concepts:

- Many filters aren't selective for any concepts
- A few filters are selective for many concepts



Concepts per Filters

Sheep $(loU_{set} = .21)$



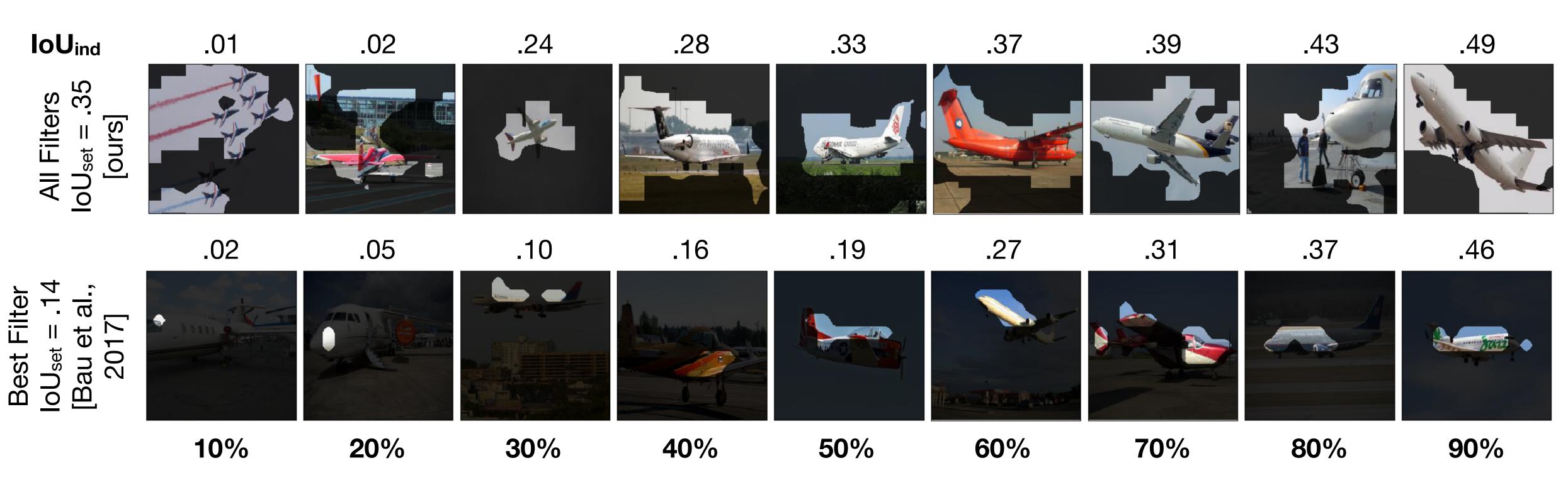
AlexNet conv5 unit 66 is highly selective for various farm animals

Horse $(IoU_{set} = .21)$



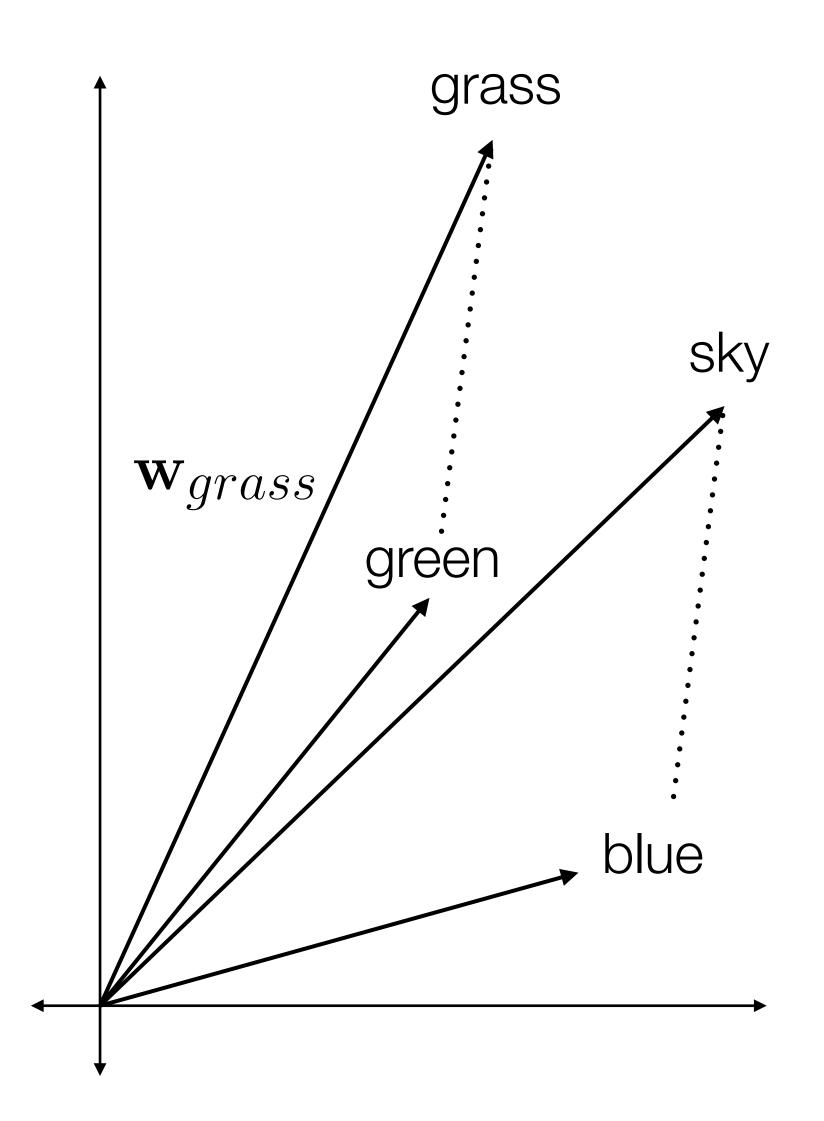
Cow $(loU_{set} = .20)$

Visualizing Non-Maximal Examples



Spanning Deciles

Comparing Concept Embeddings

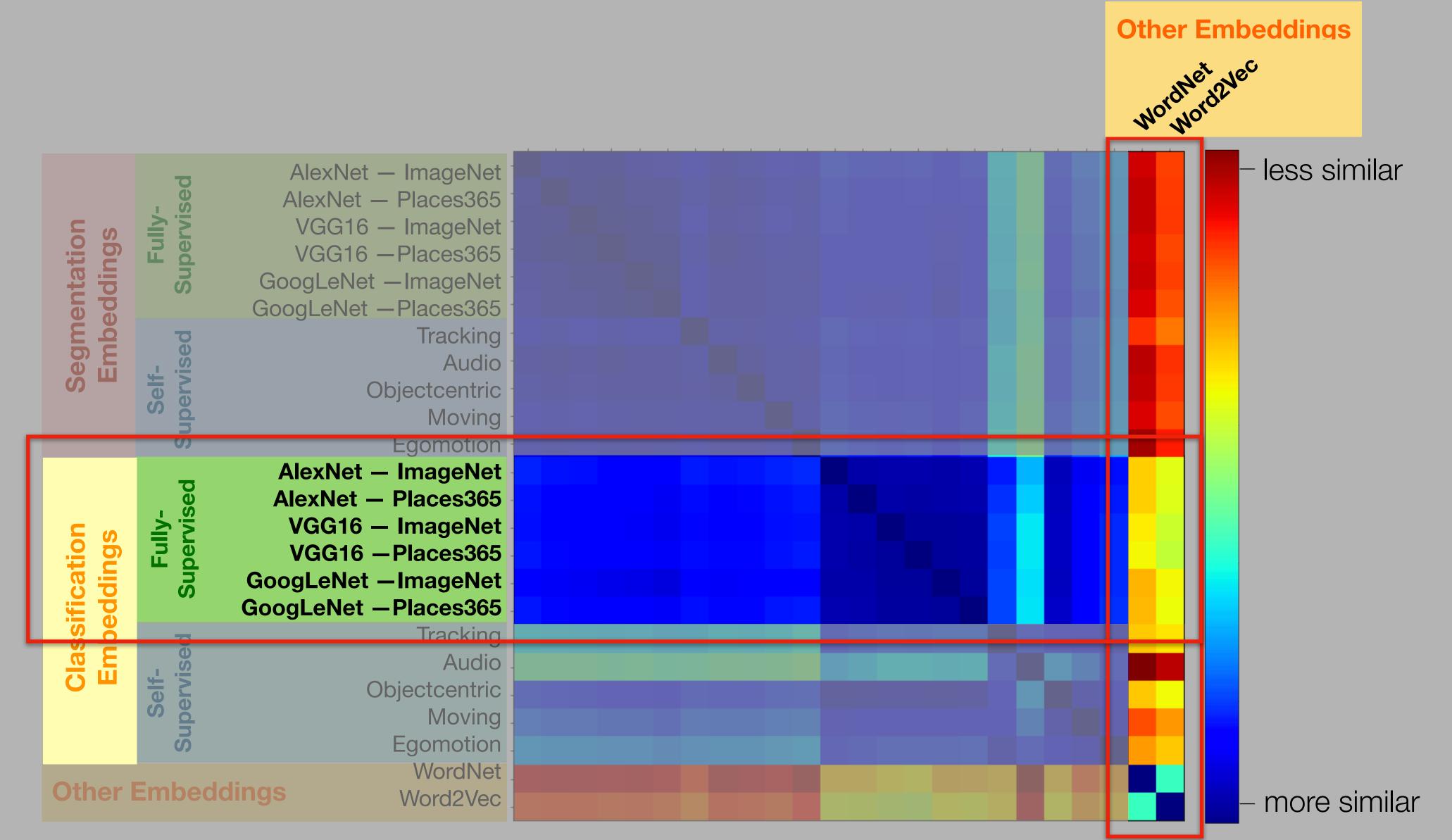


```
grass + blue — green = sky
```

Comparing Concept Embedding Spaces



Comparing Concept Embedding Spaces



Chat more at poster E9!

Code: https://github.com/ruthcfong/net2vec

