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Filter Visualizations
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Fllter—Ccmcept Overlap
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Modified Network Dissection visualization of AlexNet conv5 filters [Bau, et al., 2017]



Filter-Concept Overlap
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Methoo

Probe a network with a dataset
and learn to perform a task using
activations at a given layer.

Bau et al, CVPR 2017. “Network Dissection.”
Agrawal et al., ECCV 2014. “Analyzing the performance of neural networks.”
Alain & Bengio, ICLR Workshop 2017. “Understanding intermediate layers using linear probes.”



BRODEN Dataset

Image-level Annotations Pixel-level Annotations

street (scene) flower (object) headboard (part)

swirly (texture)

Figure 1 from Bau, et al., 2017
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Subset:
Only use top F filters,
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Extract Segmentathﬂ Single Filter
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Classification
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A Few Results
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Concepts are encoded better when using multiple filters.




# Filters Per Concept
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Different concepts require different number of filters for encoding.



# Filters: Supervised vs. Self-Supervised

Performance Improvement (Single Filter — All Filters):
e Self-supervised networks: 5-6x

e Fully-supervised networks: 2-4x

Self-supervised networks encode BRODEN concepts more distributively.



# Concepts per Filters

Found a wide range In
filter capacity to encode
concepts:

 Many filters aren’t
selective for any
concepts

e A few filters are
selective for many
concepts
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# Concepts per Filters

Sheep
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AlexNet conv5 unit 66
s highly selective for ... on,
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Comparing Concept Embeddings
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Comparing Concept Embedding Spaces
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Comparing Concept Embedding Spaces
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Chat more at
poster E9!

Code: https://github.com/ruthcfong/net2vec



https://github.com/ruthcfong/net2vec

