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What is interpretabilitys

Research focused on explaining complex Al systems
in 2 human-interpretable way.



Why interpretability?

. ;ﬁ Science
e W Trust
» & Learning


https://emojipedia.org/handshake/
https://emojipedia.org/robot/

An incomplete retrospective: the first decade of deep learning

photo

GANs (2014-2018) Transformers (2017-now)
IMAGENET GAN, ProGAN, CycleGAN Transformer, BERT, ViT
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CNNs (2012-2016) Self-supervised learning (2016-now) Diffusion models (2020-now)
AlexNet, VGG16, Colorization, MOCO, SWaV DDPM, DALL-E 2, Imagen
GooglLeNet, ResNet50 ’

[Krizhevsky et al., NeurIPS 2012; Zhu* & Park* et al., ICCV 2017; Zhang et al., ECCV 2016;
Dosovitskiy* et al.,, ICLR 2021; Ramesh et al., arXiv 2022]



Feature visualizati 3-2018)
Activation Max., Feature Inversion,
Net Dissect, Feature Vis.

Grad CAM concepts ¢
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Attribution heatmaps (2013-2019) Interpretable-by-design (2020-now)
Gradient, Grad-CAM, Concept Bottleneck, ProtoPNet,
Occlusion, Perturbations, RISE ProtoTree

[Selvaraju et al.,, ICCV 2017; Fong* & Patrick* et al., ICCV 2019; °
Bau* & Zhou* et al., CVPR 2017; Olah et al., Distill 2017; Koh*, Nguyen*, Tang* et al., ICML 2020]



An incomplete retrospective: the ﬂrst decade of interpretability
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[Selvaraju et al.,, ICCV 2017; Fong* & Patrick* et al., ICCV 2019; ¢
Bau* & Zhou* et al., CVPR 2017; Olah et al., Distill 2017; Koh*, Nguyen*, Tang* et al., ICML 2020]



Directions for the next decade of interpretability

1. Develop interpretability methods for diverse domains
» Beyond CNN classitiers: self-supervised learning, generative models, etc.

2. Center humans throughout the development process

e In design, co-develop methods with real-world stakeholders.

 In evaluation, measure human interpretability and utility of methods.

» In deployment, package interpretability tools for the wider community.



Roadmap

1. Automated evaluation of interpretability =& human-centered evaluation

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022.
HIVE: Evaluating the Human Interpretability of Visual Explanations.
(+ Sunnie S. Y. Kim et al,, arXiv 2022. “Help Me Help the Al”)

2. Explanations via labelled attributes — explanations via labelled attributes and unlabelled features

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022.
ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
(+ Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors in Concept-based Explanations.)

3. Interpretability of supervised models = interpretability of self-supervised models

Iro Laina, Ruth Fong, Andrea Vedaldi, NeurlPS 2020.
Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.

4. Interpretability in ML + CV — interdisciplinary research (interpretability + X)

(+ Nicole Meister* and Dora Zhao* et al., arXiv 2022. Gender Artifacts in Visual Datasets.)
(+ Indu Panigrahi et al., arXiv 2022. Improving Fine-Grain Segmentation via Interpretable Modifications.)

5. Static visualizations — interactive visualizations

Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021.
Interactive Similarity Overlays.
(+ Devon Ulrich and Ruth Fong, in prep. Interactive Visual Feature Search.)
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Explanation form factors: Why did the model predict Y?

Why Cardinal (L) and not
Summer Tanager (R)?

Heatmap explanations
(e.g. Grad-CAM)

%

concepts c
h wing color
| undertail color task y
Classifier '[ bird species ]
N - Prototype explanations Counterfactual explanations
“_’ (e.g. ProtoPNet) (e.g. SCOUT)
Concept-based explanations [Selvaraju et al., ICCV 2017; Koh*, Nguyen*, Tang* et al., ICML 2020;

(e.g, Concept Bott eneck) Chen* & Li* et aI NeurIPS 2019; Wang & Vasconcelos, CVPR 2020]



Post-hoc explanations
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Interpretable-by-design models

O
01—>02—>03—>c4—>05—>f6|—>f7|—>f8|—>” —>sheepdog

Explanation

(produced as part of
model design)



Current metrics focus on heatmap evaluation

e Weak localization performance [Zhang et al., ECCV 2016 ] e Sheng & Huang, HCOMP 2020

o Perturbation analysis Guess the incorrectly predicted label

« Deletion game [Samek et al., TNNLS 2017] » Nguyen et al, NeurlPS 2021
s this prediction correct?

e Retrain with removed features [Hooker et al., NeurIPS 2019] | |
e Colin* & Fel* et al., arXiv 2021

e Sensitivity to... What did the model predict (choose one of two)?

e output neuron [Rebuffi* Fong*, Ji* et al., CVPR 2020]
« model parameters [Adebayo et al., NeurIPS 2018]

» -

Automatic Human

13



HIVE: Evaluating the Human Interpretability of Visual Explanations

1. Within method — Cross-method comparison
2. Automated evaluation @ Human-centered evaluation

3. Intuition-based reasoning — Falsifiable hypothesis testing

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022. |
HIVE: Evaluating the Human Interpretability of Visual Explanations.

4



Our contributions

» Novel human study design for evaluating 4 diverse interpretability methods
o First human study for interpretable-by-design and prototype methods

» Quantify the utility of explanations in distinguishing between correct and incorrect predictions

» Quantify how users would trade off between interpretability and accuracy

e Open-source HIVE studies to encourage reproducible research

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.] 15



1. Cross-method comparison

Grad-CAM BagNet

interpretable-by-design

ProtoPNet
BagNet
ProtoTree
heatmap prototype
Grad-CAM
post-hoc

X > Scarlet
Tanager

[Selvaraji et al,, ICCV 2017; Brendel & Bethge, ICLR 2019;
Chen* & Li* et aI NeurlPS 2019, Nauta et al., CVPR 2021]



2. Human-centered evaluation

Agreement task Distinction task
How confident are you in the model’s prediction? Which class do you think is correct?

b

Class A, looks
Class A, looks hecause
because Nike

Class B,

because

Class C,
because

Class D,

. o - because
Experimental set-up: AMT studies with N=50 participants each

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Chen* & Li* et al., NeurIPS 2019] 17



ProtoPNet and ProtoTree only

Task: Rate the similarity of each row's

2. |_| uman-cente red eva‘ uatiOn prototype-region pair on a scale of 1-4.

(1: Not Similar, 2: Somewhat Not Similar, 3: Somewhat Similar, 4: Similar)

Shown below is the model's
explanation for its prediction
(all prototypes and their
source photos are from
Species 2).

Agreement task

How confident are you in the model’s prediction?

_ Prototype's
Photo Region Prototype Photo

“ looks like - |

" = .
b | :

01 02 03 O4

Q. What do you think about the model's prediction?

(O Fairly confident that prediction is correct

(O Somewhat confident that prediction is correct
(O Somewhat confident that prediction is incorrect
(O Fairly confident that prediction is incorrect

Finding #1: Prototype similarities often do not

align with human notions of similarity.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Chen* & Li* et al., NeurIPS 2019] 1s



Task: Rate the similarity of each row's

2. |_| uman-cente red eva‘ uation prototype-region pair on a scale of 1-4.

(1: Not Similar, 2: Somewhat Not Similar, 3: Somewhat Similar, 4: Similar)

Shown below is the model's
explanation for its prediction
(all prototypes and their
source photos are from

Agreement task

How confident are you in the model’s prediction?

Species 2).
Prototype's
Photo Region Prototype Photo

X looks like T
BN Wl

01 02 O3 O4

Finding #2: Agreement task reveals
confirmation bias. “ gnke i, -
01 0203 O4

More than 50% were fairly or somewhat
confident that a prediction is correct (even for

i ncorrect P red iCtiO N S) . @ Somewhat confident that prediction is correct

() Somewhat confident that prediction is incorrect
(O Fairly confident that prediction is incorrect

Q. What do you think about the model's prediction?

@ Fairly confident that prediction is correct

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.; Chen* & Li* et al., NeurIPS 2019] 1



Photo Prediction 1 Prediction 2

2. Human-centered evaluation

Distinction task
Which class do you think is correct?

Prediction 3 Prediction 4 1.0 (Important)

Finding #3: Participants struggle to identify the

0.8

0.6

correct class, esp. for incorrect predictions.

0.4

io.z
0 (Not important)

For incorrect predictions, correctly answered
around 25% of the time (random guessing).

- Q. Which class do you think is correct?
Goal: Interpretability should help humans O1 02 03 O4

Identlfy and explain model errors. Q. How confident are you in your answer?

() Not confident at all
(O Slightly confident

() Somewhat confident
(O Fairly confident

() Completely confident

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE,; Selvaraju et al,, ICCV 2017] 20



3. Falsifiable hypothesis testing

Finding #1: Prototype similarities often do not
align with human notions of similarity.

Finding #2: Agreement task reveals
confirmation bias.

Finding #3: Participants struggle to identify the
correct class, esp. for incorrect predictions.

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.] 2



3. Falsifiable hypothesis testing

Finding #1: Prototype similarities often do not
align with human notions of similarity.

Finding #2: Agreement task reveals
confirmation bias.

Finding #3: Participants struggle to identify the
correct class, esp. for incorrect predictions.

Finding #4: Participants prefer interpretability
over accuracy, esp. in high-risk settings.

Follow up: Kim et al., arXiv 2022.

“Help Me Help the Al”: Understanding How
Explainability Can Support Human-Al Interaction.

Interpretability-accuracy tradeoff

Q: What is the minimum accuracy of a
baseline model that would convince
you to use it over a model with
explanations?

Required accuracy gain (%)

o

=
N

=
o

(o))

S

N

+ 10.9%

Low-risk Medium-risk High-risk
(e.g. educational (e.g. biodiversity (e.g. veterinary
purposes) monitoring) medicine)

[Sunnie S. Y. Kim et al., ECCV 2022. HIVE.] 2



Follow up: “Help Me Help the Al” — interview study with Merlin users

F simier Score for Evening Grosbeak
=17
==1.2 tong beak —

+ 1.1 yellow beak

+ 0.8 black feathers

- 0.7 white body

+ 0.5 yellow body

=+ 0.1 round body

What kind of explanation
best explains this prediction?

¢ 10f2 @ A ¢  Best Matches f
Zoom until your bird fills the box

DETA LIST
Evening Grosbeak
N . o
\ - - . A y
- ’ s Y
— ‘y '. b b
3 .‘ f._,‘ll 'e r /“‘
N . -
73
“. -t -
201
» - '.‘ 3

Concepts

olched t Males are stur g with Cark head
=] This Is My Bird! (i ]

Cape Siskin

Interview Merlin app Heatmaps Examples

Sunnie S. Y. Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, Andrés Monroy-Hernandez, arXiv 2022. 2
“Help Me Help the Al”: Understanding How Explainability Can Support Human-Al Interaction.

3



Challenges for human evaluation

o Skill cost: web development skills
o Financial cost: budget for AMT experiments
» Time cost: human study design and iteration (e.g. task feasibility, IRB approval, quality control)

Takeaway: As a research community, invest in and reward human evaluation studies (like dataset development).

24



Roadmap

1. Automated evaluation of interpretability = human-centered evaluation

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022.
HIVE: Evaluating the Human Interpretability of Visual Explanations. Ramaswamy
(+ Sunnie S. Y. Kim et al., arXiv 2022. “Help Me Help the AL”)

Vikram V.

2. Explanations via labelled attributes — explanations via labelled attributes and unlabelled features

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022.
ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
(+ Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors in Concept-based Explanations.)

3. Interpretability of supervised models = interpretability of self-supervised models

Iro Laing, Ruth Fong, Andrea Vedaldi, NeurIPS 2020.
Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.

4. Interpretability in ML + CV — interdisciplinary research (interpretability + X)

(+ Nicole Meister*and Dora Zhao* et al., arXiv 2022. Gender Artifacts in Visual Datasets.)
(+ Indu Panigrahi et al,, arXiv 2022. Improving Fine-Grain Segmentation via Interpretable Modifications.)

5. Static visualizations — interactive visualizations

Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021.
Interactive Similarity Overlays.
(+ Devon Ulrich and Ruth Fong, in prep. Interactive Visual Feature Search.) 25



Concept-based explanations

Why did the model predict sheepdog? Concept-based explanation
4 N
gfur
CNN  — fc — sheepdog gfaw — sheepdog
ree
& )

Pro: Labelled concepts are interpretable to humans



Concept Bottleneck: Linear Combination of Labelled Attributes

Predict present or Linearly combine with
absence of attribute  attribute weights

) 4 )
9.2 x +1.2 fur
CNN  —] 37 X *0.7 paw L g — sheepdog
-6.5 X -0.6 tree
____/ \_ J

attribute weights
for sheepdog

Con: Problems with predicting fractional values
e hard to interpret

e can encode hidden information
[Koh*, Nguyen*, Tang* et al., ICML 2020] 27



Concept Bottleneck: Linear Combination of Labelled Attributes

Predict present or Linearly combine with
absence of attribute  attribute weights

) 4 )
1 X +1.2 fur
CNN  — ! X *0.7 paw L g — sheepdog
0 -0.6 tree
____/ \_ J

attribute weights
for sheepdog

Con: Problems with predicting fractional values
e hard to interpret

e can encode hidden information
[Koh*, Nguyen*, Tang* et al., ICML 2020] 2



ELUDE: Explanation via a Labelled and Unlabelled DEcomposition of
features

CNN —+ (¢ ——————————————— sheepdog

Goal: Approximate behavior of original CNN

[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] 2



ELUDE: Decomposition of labelled and unlabelled features

) 4 )
8.2 ) 4 +1.1 15
CNN — X D S sheepdog
-7.6 X -0.7 f3
N \_ ),
feature feature weights
. . . activations for sheepdo
Goal: Approximate behavior of original CNN paos
1. Linearly combine ground-truth, labelled () g
. 1 X +1.2 fur
attributes
L X +0.7 paw
2. Learn remaining unlabelled features as 0 X "0:6 tree
low-rank space | ‘ L y

ground-truth
presence/absence
of attributes

attribute weights

for sheepdog [Vikram V. Ramaswamy et al,,

arXiv 2022. ELUDE.]
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Attributes only: % of model explained via labelled attributes
decreases as task complexity increases

% Explained

2-way scene classification o 7
(indoor vs. outdoor) '
16-way scene classification 469
(home/hotel, workplace, etc.) |
365-way scene classification
- . 28.8
(airfield, bowling alley, etc.)

Without fractional values encoding hidden information,
attribute-only approaches are limited.

[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] =



Attributes only: % of model explained via labelled attributes
decreases as task complexity increases

Scene group TPR

home/hotel 99.0

comm-buildings/towns 93.5

water/ice/snow 60.6

forest/field/jungle 40.2

workplace 14.2

shopping-dining 12.4

cultural/historical 6.5 Without fractional values encoding hidden information,
cabins/gardens/farms 4.7 attribute-only approaches are limited.
outdoor-transport 3.2

indoor-transport 0.0

indoor-sports/leisure 0.0

indoor-cultural 0.0

mountains/desert/sky 0.0

outdoor-manmade 0.0

outdoor-fields/parks 0.0

industrial-construction 0.0

[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] =



Features + attributes: Unlabelled features correspond to human-
interpretable concepts

Scene group TPR
home/hotel 99.0
bowl; levs? comm-buildings/towns 93.5
Owling alleys: water/ice/snow 60.6
forest/field/jungle 40.2
workplace 14.2
: hopping-dinin 12.4
y) shopping g
people eating: cultural/historical 6.5
cabins/gardens/farms 4.7
outdoor-transport 3.2
outdoor sports fields? indoor-transport 0.0
indoor-sports/leisure 0.0
indoor-cultural 0.0
mountains/desert/sky 0.0
castle-like buildings? outdoor-manmade 0.0
outdoor-fields/parks 0.0

industrial-construction 0.0

attributes only
[Vikram V. Ramaswamy et al., arXiv 2022. ELUDE.] s



Follow up: Overlooked factors in concept-based explanations

Factor #1: Probe dataset choice matters

(i.e. different datasets —different explanations).

e o o A

Factor #2: Some concepts used in explanations g
P P | " I » sheepdog
are harder to learn than output classes. | x free
\_ J

Factor #3: Humans can reason with a small

amount of concepts (i.e. max 32 concepts).

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Ruth Fong, Olga Russakovsky, arXiv 2022.
Overlooked Factors in Concept-based Explanations: Dataset Choice, Concept Salience, and Human Capability.

4



Follow up: Overlooked factors in concept-based explanations

Factor #1: Probe dataset choice matters Training dataset: Probe dataset:
(i.e. different datasets —different explanations). Places365

ADE20k

$grandstand, goal,
ice rink, scoreboard}

Pascal
$plaything, road}

hockey arena

Suggestion: Choose a probe dataset with a Concepts used to explain hockey arena
similar distribution to that of the training dataset. differ based on probe dataset.

Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors. 3



Follow up: Overlooked factors in concept-based explanations

Training dataset: Probe dataset:
Places365 Broden
p—

Factor #2: Some concepts used in explanations - . toilet 399
are harder to learn than output classes. shower 18.8
countertop 12.6

bathtub 11.1

screen door 9.6

hathroom
(norm AP = 43.3)

Suggestion: Only use easily learnable concepts in | |
concept-based explanations. he class bathroom is easier to learn

than the concepts used to explain it.

Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors. 3



Follow up: Overlooked factors in concept-based explanations

AMT human study
(N = 125 participants)

Concepts Explanation for Scene W
wall = 1.88

P floor = + 1.88
| |windowpane .95
| |table .60
| |plant .28

.04

.03
.00

(bed)
(chair)
(sofa)
(armchair)
(table)
(sconce)

| |chair
carpet

lamp
P bed

O O 0O 0O O O -
E I -
©O ©O ©O © O =

».a | I | |

Factor #3: Participants can reason with a small - [Jsofa

cushion

| |armchair

amount of concepts (i.e. max 32 concepts). £ R Oves

1. Which scene do you think the model

2. How many concepts would you prefe

| |sconce
| |Jcoffee table

| |fireplace
predicts? Participants struggle to identity concepts as the
-2 number of concepts increases.

(71.7% for 8 concepts; 56.8% for 32 concepts)

Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors. 37



Challenges for concept-based methods

o Attributes-only approaches are incomplete

bp

» Develop more methods to explain the “remainder

» Interpretable Basis Decomposition (IBD) [Zhou et al., ECCV 2018]
o Automatic Concept-based Explanations (ACE) [Ghorbani et al., NeurlPS 2019]
e ConceptSHAP [Yeh et al,, NeurlPS 2020]

« Ensure that concept-based explanations are truly human-interpretable

Takeaway: Be realistic about the benefits and limitations of an interpretability method
and work towards addressing the limitations.

38



Roadmap

1. Automated evaluation of interpretability = human-centered evaluation

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022. Iro Laina
HIVE: Evaluating the Human Interpretability of Visual Explanations.
(+ Sunnie S. Y. Kim et al., arXiv 2022. “Help Me Help the AL”)

2. Explanations via labelled attributes — explanations via labelled attributes and unlabelled features

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022.
ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
(+ Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors in Concept-based Explanations.)

3. Interpretability of supervised models = interpretability of self-supervised models

Iro Laina, Ruth Fong, Andrea Vedaldi, NeurIPS 2020.
Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.

4. Interpretability in ML + CV — interdisciplinary research (interpretability + X)

(+ Nicole Meister*and Dora Zhao* et al., arXiv 2022. Gender Artifacts in Visual Datasets.)
(+ Indu Panigrahi et al., arXiv 2022. Improving Fine-Grain Segmentation via Interpretable Modifications.)

5. Static visualizations — interactive visualizations

Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021.
Interactive Similarity Overlays.
(+ Devon Ulrich and Ruth Fong, in prep. Interactive Visual Feature Search.) 39



Supervised Learning

sheepdog




Self-Supervised Learning

41



Visual Concept
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Self-Supervised Learning
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Self-Supervised Learning

Unlabelled data N
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L earnability

@ 2003 ﬂcﬁé}iﬂmh"

SNR—

[Iro Laing, et al., NeurlPS 2020. Quantifying Learnability and Describability.] 4



L earnability
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[Iro Laing, et al., NeurlPS 2020. Quantifying Learnability and Describability.] 47



Describability

dessert with
chocolate sauce

[Iro Laing, et al., NeurlPS 2020. Quantifying Learnability and Describability.] 4



Describability

(A)

dessert with
chocolate sauce

Manual

[Iro Laing, et al., NeurlPS 2020. Quantifying Learnability and Describability.] 4



Describability

(A)

dessert with
chocolate sauce

(B)

Manual Automatic

» -

[Iro Laing, et al., NeurlPS 2020. Quantifying Learnability and Describability.] so



Evaluation

90 ImageNet cluster purity:
80 R e | how correlated is a cluster’s contents

70 co b to a single ImageNet label?

60

Accuracy

>0 . purity = 1 = cluster only contains images

40 from a single ImageNet label

30 e Sela MoCo

20
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Purity

[Iro Laina, et al., NeurlPS 2020. Quantifying Learnability and Describability. ] 5
[Asano et al,, ICLR 2020; He et al., CVPR 2020]
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Evaluation

Learnability @

1 Pod 44 LW L4l AN P4
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70 oe 0 70 o ¥

60

Accuracy
Accuracy
(@)

o
!

50 50

40 40

30 e Sela MoCo 30 e Sela MoCo

20 20
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Purity Purity

[Iro Laing, et al., NeurIPS 2020. Quantifying Learnability and Describability. ] .
[Asano et al,, ICLR 2020; He et al., CVPR 2020]



Follow up: Laina et al., ICLR 2022.
Measuring the Interpretability of Unsupervised
Representations via Quantized Reverse Probing.

Findi NgS ImageNet cluster purity
4
SeLa: cluster 393 (0.668) SeLa: cluster 332 (0.542) MoCo: cluster 2335 (0.459)
a newborn baby lying on a bed a snake on a hand view of the mountains from the lake

08.3% (@) 100.0% 03.3% @) 95.0%

[Iro Laina, et al., NeurlPS 2020. Quantifying Learnability and Describability. ] .
[Asano et al,, ICLR 2020; He et al., CVPR 2020]



ML fairness cross-talk: Gender artifacts in CV

Nicole Meister Dora Zhao

Average color
F

Average pose

1. Resolution &

Color
2 persons = R
Background Raledy | MesSeom | Msed  Mawoom  Mawres

—_
o
o

AL

a1
o

Color Channel Value

0.1 . 1.0

0.0 0.0

F M F M F M F
Area Distance Aspect

y FoooM F 3. Contextual
Red Green Blue ObjeCtS

o

Lo o8
D3R AAER LRk Anegh .

Horse Oven Skateboard Skateboard

Differences in top 20 female vs. male* predicted images.

Gender artifacts are everywhere in visual datasets.

(* binary perceived gender expression; Nicole Meister*, Dora Zhao*, Angelina Wang, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, arXiv 2022. .
Gender Artifacts in Visual Datasets.

we do not condone gender prediction.)



Extending Interpretability to Geosciences

Indu Panigrahi Elizabeth Barnes
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Layer-wise Relevance Propagation «

Understand and improve [dentity important regions in the world that
a coral reef fossil segmentation model reliably predict seasonal climate
(our work) (Elizabeth Barnes’ group at Colorado State)

Indu Panigrahi et al., arXiv 2022. Improving Fine-Grain Segmentation via Interpretable I\/lodlﬂcatlons
Zachary M. Labe and Ellzabeth A. Barnes, JAMES 2021. Detecting Climate Signals Using Explainable Al.



Challenges for novel frontiers in deep learning

» Need to contextualize interpretability to the novel frontiers
o Lack of access to standardized implementations

Takeaway: Collaboration and buy-in from novel research areas is crucial
for interpretability in those frontiers.
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Roadmap

1. Automated evaluation of interpretability =& human-centered evaluation

Sunnie S. Y. Kim, Nicole Meister, Vikram V. Ramaswamy, Ruth Fong, Olga Russakovsky, ECCV 2022.
HIVE: Evaluating the Human Interpretability of Visual Explanations.
(+ Sunnie S. Y. Kim et al., arXiv 2022. “Help Me Help the AL”)

2. Explanations via labelled attributes — explanations via labelled attributes and unlabelled features

Vikram V. Ramaswamy, Sunnie S. Y. Kim, Nicole Meister, Ruth Fong, Olga Russakovsky, arXiv 2022.
ELUDE: Generating Interpretable Explanations via a Decomposition into Labelled and Unlabelled Features.
(+ Vikram V. Ramaswamy et al., arXiv 2022. Overlooked Factors in Concept-based Explanations.)

3. Interpretability of supervised models = interpretability of self-supervised models

Iro Laina, Ruth Fong, Andrea Vedaldi, NeurlPS 2020.
Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning.

4. Interpretability in ML + CV — interdisciplinary research (interpretability + X)

(+ Nicole Meister* and Dora Zhao* et al., arXiv 2022. Gender Artifacts in Visual Datasets.)
(+ Indu Panigrahi et al,, arXiv 2022. Improving Fine-Grain Segmentation via Interpretable Modifications.)

5. Static visualizations — interactive visualizations

Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021.
Interactive Similarity Overlays.
(+ Devon Ulrich and Ruth Fong, in prep. Interactive Visual Feature Search.)
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Interpretability Tools

Mask Grad CAM

cabbage butterfly

Activation Maximization Feature V|s

Current tools render static images. Future tools should be interactive!

[Fong et al, ICCV 2019; Selvaraju et al,, ICCV 2017; Bau et al., CVPR 2017;
Mahendran & Vedald| IJCV 2016; Olah et al, Dlstlll 2018; Fong et al. VISxAI 2021]



Interpretability: Interactive, Exploratory, Easy-to-use

E{}»sheepdog

How can we easily explore hypotheses about the model?

Acknowledgement: Chris Olah s



Interactive Similarity Overlays

Ruth Fong, Alexander Mordvintsev, Andrea Vedaldi, Chris Olah, VISxAI 2021. 6
Interactive Similarity Overlays.

0



Spatial Activations

\
fb — golden retriever
/
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Spatial Activations

/
%
/
%

4
4
4
4
K

n{~ma ~n ! AN

\
fb — golden retriever
—

[Olah et al,, Distill 2018] e2



Interactive Similarity Overlays

as s = [17.7,0,103.4, 6.81, 0, 0, 0, 0, 32.0, 0, 0, O, ...]

[Olah et al,, Distill 2018] &3



Interactive Similarity Overlays

[Fong et al., VISxAI 2021. Interactive Similarity Overlays.] s



Demo: Interactive Similarity Overlays

bit.ly/interactive_overlay

Interactive visualizations empower practitioners to easily explore model behavior.

[Fong et al., VISXAI 2021. Interactive Similarity Overlays.] s


http://bit.ly/interactive_overlay

Interactive Similarity Overlays

An interactive tool for understanding what neural networks consider similar and
different.

Hover over different parts of the above images. This interactive visualization shows how similar (or different)

neural network considers different image patches to the current image patch (highlighted in yellow). Try hovenng
over animal features (e.g., noses, eyes, faces) and background regions.

This article is best viewed in Google Chrome.




Layers with different spatial resolutions.

\ 4 " - .‘_ > ‘ —— | )
o ? .&' ’ -
' { N

The location of the highlighted image patch (in yellow) has been synchronized across images, such that the
overlays show similarity scores with respect to each image's highlighted patch (i.e., no similarity scores were
computed between images). Consider exploring edges in mixed3b layers and semantic features (e.g., objects and
object parts, like noses and eyes) in mixed4e and mixed5b layers.







cO L. Interactive Overlays: Basic Examples (TensorFlow)

File Edit View Insert Runtime Tools Help Cannot save changes

- + Code + Text &3 Copy to Drive
Q [ 1 # Get images

img urls = ["https://raw.githubusercontent.com/ruthcfong/interactive overlay/master/images/dog cat.jpeg",
{x} "https://raw.githubusercontent.com/ruthcfong/interactive overlay/master/images/flowers.jpeg",

"https://raw.githubusercontent.com/ruthcfong/interactive overlay/master/images/pig.jpeg",

"https://raw.githubusercontent.com/ruthcfong/interactive overlay/master/images/bowtie guy.jpeg",
"https://raw.githubusercontent.com/ruthcfong/interactive overlay/master/images/beer. jpeg",
"https://raw.githubusercontent.com/ruthcfong/interactive overlay/master/images/chain.jpeg"]

imgs = [load(url) for url in img urls]

model = models.InceptionVl1()
model.load graphdef ()

[ ] acts = get acts(model, imgs[0], "mixed4d")
grid = np.hstack(np.hstack(cossim grid(acts, acts)))
colored grid = add color index(grid, acts.shape[0])

0 lucid svelte.CossimOverlay ({
"image url": image url(imgs([0]),
"masks url": image url(colored grid),
"size": 224,
"N": acts.shape[0],

})

<>
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Preview: Interactive Visual Feature Search Er2. ;ﬁ
El:r:f'.h...r-

bit.ly/interactive_search  Devon Ulrich

Devon Ulrich and Ruth Fong, in prep 2022.
Interactive Visual Feature Search. 7
Acknowledgement: David Bau


http://bit.ly/interactive_search

Challenges for interactive visualizations

o Skills cost: web development skills

» ~/ HuggingFace Spaces, Gradio, Streamlit

« Potential misuse: Intuition-based insights should be validated via quantitative experiments
» Poor incentives: software tooling for research is often not rewarded
» Inadequate publishing structures: Sparse publishing venues for interactive articles and/or visualizations

o "\ Distill journal hiatus
e ~/ CVPR demo track

o Lack of cross-talk: HCl and Al communities are developing interpretability tools fairly independently

Takeaway: Relevant research communities should collectively invest in and reward
software tooling for research, particularly interactive tools. .


https://emojipedia.org/chart-increasing/
https://emojipedia.org/chart-decreasing/
https://emojipedia.org/chart-increasing/

Takeaways from challenges in interpretability

 Human studies: As a research community, invest in and reward human evaluation studies (like dataset
development).

« (Concept-based) interpretability: Be realistic about the benefits and limitations of an interpretability
method and work towards addressing the limitations.

 New frontiers: Collaboration and buy-in from novel research areas is crucial for interpretability in those
frontiers.

 Interactive visualizations: Relevant research communities should collectively invest in and reward
software tooling for research, particularly interactive tools.
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Directions for the next decade of interpretability

1.

2.

Develop interpretability methods for diverse domains
» Beyond CNN classitiers: self-supervised learning, generative models, etc.

Ce

N des
N eva

uation, measu

ign, co-develop methods with real-world stakeholders.

re human inte

n deployment, package interpreta

Andreas
Ruth Fong - Taesup Moon -
Klaus-Robert Miiller - Wojciech Samek (Eds.)

xxAl - Beyond
Explainable Al

Internat ional Workshop
Held in Conjunction with ICML 2020
July 18, 2020, Vienna, Austria, Revised and Extended Papers

LNAI 13200

@ Springer

nter humans throughout the development process

ICML 2020 workshop on XXAl

rpretability and utility of methods.

oility tools for the wider community.
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http://interpretable-ml.org/icml2020workshop/

Primarily focused on understanding
and approximating CNNs

Feature visualizati 3-2018)
Activation Max., Feature Inversion,
Net Dissect, Feature Vis.

2012

Grad CAM

concepts ¢
o) wing color 2 O 2 2

undertail color task y

g q Q CNN_| . | Classifier { i svecies ]
Attribution heatmaps (2013-2019) Interpretable-by-design (2020-now)
Gradient, Grad-CAM, Concept Bottleneck, ProtoPNet,
Occlusion, Perturbations, RISE ProtoTree

[Selvaraju et al.,, ICCV 2017; Fong* & Patrick* et al., ICCV 2019; 7
Bau* & Zhou* et al., CVPR 2017; Olah et al., Distill 2017; Koh*, Nguyen*, Tang* et al., ICML 2020]



Into the future: the next decade of interpretability

Q¢
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