
B
Primer on convolutional neural networks

Contents
B.1 Machine learning set-up 143

B.1.1 Data . 144
B.1.2 Task . 144
B.1.3 Model . 146
B.1.4 Training procedure . 146

B.2 Convolutional neural networks 147

B.2.1 Linear layers . 147
B.2.2 Other layers . 153
B.2.3 Putting it all together 155

In this section, we provide a brief primer on deep learning, with a particular
emphasis on explaining the basics for training an object classification CNN. This
primer is primarily for readers with minimal background knowledge. For a primer
on the mathematical notation and concepts used, see appendix A. In particular,
see appendix A.7 for a detailed description of the notation we use to describe CNNs.

B.1 Machine learning set-up
A machine learning set-up is primarily defined by the following four ingredients:
the model being trained as well as the data, task, and training procedure used.

143

144 B.1. Machine learning set-up

B.1.1 Data

The training data is most often defined as pairs of inputs and outputs1 (i.e. D =
{(xi, yi)}N

i=1), where a model’s aim is to predict an output from its corresponding
input. For object classification, the inputs are RGB images (i.e. x œ R3◊H◊W) and
the outputs are labels of the most dominant object in the corresponding images
(i.e. “sheepdog”, “sea snake”, “soup bowl”, “alps”, etc.). The output label is also
known as the ground truth label. The output label for object classification is
usually represented as a one-hot vector

2 of length C, where C denotes the number of
object categories (i.e. y œ RC) and the indices of the vector denote di�erent object
categories. For a given input-output pair (i.e. (x, y)), the index of the output vector
(i.e. y) containing 1 denotes the most dominant object in the input image (i.e. x).

B.1.2 Task

The format of the training data is deeply related to the training task, which
is typically an informal description of the prediction task that the model is
being trained for.

B.1.2.1 Object classification

For example, object classification refers to the task of predicting the dominant
object category of an image, while colorization (R. Zhang et al., 2016) refers to
predicting a color image from a black-and-white version of it. More formally, the
task is typically defined by the training data and the loss function used to train
the model. The majority of machine learning tasks aim to minimize a loss function,
which captures a notion of error or incorrect behavior and can be optimized.3

B.1.2.2 Cross-entropy loss

For classification problems, the cross-entropy loss (a.k.a. log loss) function is typically
used.45 In its simplest form, it measures the performance of a classification model

1When the outputs require human annotation (i.e. labeling), this set-up is known as supervised
learning. When the outputs do not require human annotation (i.e. they are free), this set-up is
known as self-supervised learning. An example of a self-supervised set-up is predicting a color
image from a black-and-white version of it (R. Zhang et al., 2016).

2A one-hot vector is a vector which is filled with zeros except at one position, where it is filled
with a 1 (e.g.

#
0 0 1 0

$
).

3Optimization refers to the selection of the best solution from a set of possible solutions. See
the Wikipedia article on “Mathematical optimization”.

4This paragraph is paraphrased from (Loss Functions 2017).
5See this explanation for a more thorough and accessible, visual treatment of the cross-entropy

loss function.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

B. Primer on convolutional neural networks 145

whose output is a probability between 0 and 1 (i.e. a binary classifier, in which
positive examples should be predicted as 1 and negative examples as 0). The
cross-entropy loss is large when the predicted probability is relatively far away from
the true (a.k.a. ground-truth) label and is small when the predicted probability
is relatively close to the true label. Thus a perfect model would have a loss of
0 and the goal of the model is to minimize the loss so that its predictions are
as close as possible to the true labels.

Mathematically, for a binary classifier for which the label is either 0 or 1
(i.e. y œ {0, 1}) and its prediction is between 0 and 1 (i.e. ŷ œ [0, 1]), the cross-
entropy loss function is defined as follows:

L = ≠(y log(ŷ) + (1 ≠ y) log(1 ≠ ŷ)). (B.1)

To build intuition, consider a poor prediction of ŷ = 0.2 vs. a better prediction
of ŷ = 0.9 for a positive example (i.e. y = 1). For the poor prediction, the value
of the loss is computed as follows:

L = ≠(1 log(0.2) + 0 log(0.8)) = ≠1 log(0.2) ¥ 0.70. (B.2)

For the good prediction, the value of the loss is as follows:

L = ≠(1 log(0.9) + 0 log(0.1)) = ≠1 log(0.9) ¥ 0.05. (B.3)

Thus, this simple example, makes clear that the value of the cross-entropy loss
function is higher for bad predictions and lower for good ones.

For a classification task with more than two possible label classes (a.k.a. multi-
class classification), the cross-entropy loss function is the sum of individual cross-
entropy loss terms for each label:

L =
Cÿ

c=1
yc log(ŷc), (B.4)

where yc œ {0, 1} refers to the value at index c of the one-hot vector y œ {0, 1}C

(i.e. it is either 0 or 1) and where ŷc œ [0, 1] refers to the value at index c of
the predicted output vector ŷ (i.e. it ranges from 0 to 1 and represents the
predicted probability for class c).

Typically, a task is formulated to minimize the loss function when applied to
all training examples (i.e. by summing up the loss values for each example). Thus,
for an object classifier, the following loss would be used:

L =
Nÿ

i=1

Cÿ

c=1
yi,c log(ŷi,c), (B.5)

where i represents the index of a specific training datapoint.

146 B.1. Machine learning set-up

B.1.3 Model

Deep learning refers to the use of artificial neural networks (a.k.a. deep neural
networks), which comprise a class of algorithms6 that is very loosely inspired by how
the human brain processes information. Deep neural networks consist of multiple
layers that successively process the input to the network, much like how the human
successively processes raw visual input from the eyes, in order to produce an output.
Some layers contain parameters (a.k.a. weights) that need to be optimized in order
for the network to perform the given task well. In appendix B.2, we go into detail
for the class of models discussed in this thesis: convolutional neural networks.

B.1.4 Training procedure

A deep neural network is typically trained by updating its parameters via back-

propagation in order to minimize a loss function.

B.1.4.1 Backpropagation

Backpropagation refers to a class of algorithms in which the gradients ˆL
ˆ◊

of a loss
function with respect to a network’s parameters, ◊, are computed e�ciently7 for
a single input-output pair (i.e. (x, y)). The gradient captures how much each
parameter should change (i.e. magnitude) and in which direction (i.e. positive or
negative) in order to increase the loss value for that particular input-output pair.

B.1.4.2 Gradient descent

Because we are interested in decreasing (i.e. minimizing) the loss, we typically
update parameters by taking a step in the negative direction of the gradient; this
is known as gradient descent and is given by the following update rule:8

◊ := ◊ ≠ “
ˆL
ˆ◊

, (B.6)

where “ is the step size (a.k.a. learning rate).
6An algorithm is a well-defined process to perform a computation or specific task. It is analogous

to a cooking recipe that instructs a novice chef how to make a scrumptious scone.
7As opposed to naively computing the gradient for every network parameter independently,

which would be computationally expensive.
8A := B denotes assigning the value of A to B in computer science notation. In the case

of eq. (B.6), the new value of ◊ is equal to to right hand side of the equation.

B. Primer on convolutional neural networks 147

In practice, stochastic gradient descent (SGD), an iterative method for updating
parameters based on random (i.e. stochastic) subsets (a.k.a. batches) of the training
dataset,9 is typically used:

Algorithm 1: Stochastic gradient descent (SGD)
Data: Training data D
Hyperparameters : T (# training steps), B (batch size), “ (learning rate)
Randomly initialize network parameters ◊
for t = 1 . . . T do

Randomly sample a batch: {xb, yb}B

b=1 ≥ D
Compute loss for every item in the batch: {Lb}B

b=1
Update ◊ using batch’s gradient: ◊ := ◊ ≠ “

B

q
B

b=1
ˆLb
ˆ◊

end
The optimization settings T (number of training steps), B (batch size), and “

(learning rate) are examples of hyperparameters for a network. A hyperparameter
is a parameter that is typically set prior to training by a human; this is in contrast
to the network’s parameters, which are automatically learned.

B.2 Convolutional neural networks
Convolutional neural networks (CNNs) are a particular kind of deep neural networks
that is most frequently used on visual data (e.g. an image). They are distinguished
by their use of convolutional layers, which enable them to recognize distinctive
visual patterns (e.g. furry ears) regardless of their location in an image. This
property is known as shift invariance.10

In this section, we briefly survey the basic components of a CNN.
A layer refers to an operation that is applied to an input tensor and produces

an output tensor, which may or may not be the same shape as the input tensor.

B.2.1 Linear layers

The basic building block of deep neural networks are linear layers that linearly

combine (see appendix A.4.1) an input tensor with learned parameters (i.e. weights)
to produce an output tensor.

There are two basic kinds of linear layers: fully-connected layers and con-
volutional layers.

9By taking random subsets, SGD approximates the actual gradient, which would need to be
computed for the entire dataset.

10Here, shift refers to shifting the position of a pattern and invariance connotes remaining
unchanged regardless of changes in another property (in this case, changes in spatial shift).

148 B.2. Convolutional neural networks

B.2.1.1 Fully-connected layer

A fully-connected layer is a layer in which a unique weight is used to “connect”
every input neuron (i.e. element in the input tensor) to every output neuron
(i.e. element in the output tensor).

2-layer example. Consider the following neural network � : R3 æ R2 that
contains two linear layers. Let the following matrices and vectors be the parameters
of the first and second layer (superscript denotes the layer index) defined as follows:

W 1 œ R3◊4, W 2 œ R4◊2, b1 œ R3, b2 œ R2, (B.7)

and let the following tensors be defined as the input, intermediate (i.e. activation),
and output tensors respectively:

x œ R3, z œ R4, ŷ œ R2. (B.8)

x1

x2

x3

z1

z2

z3

z4

ŷ1

ŷ2

1

1

W1 W2x ŷz

w1
i,j i,jw2

ib1 ib
2

Figure B.1: Diagram of two fully-connected layers.

Then, layer 1 can be defined as the function f 1 : R3 æ R4, where the element
at the j-th position in the output tensor z is given by

zj = (
3ÿ

i=1
xi · w1

i,j
) + b1

j
. (B.9)

B. Primer on convolutional neural networks 149

Using matrix multiplication, we can write the function f 1 as follows:

z = f 1(x) = W 1T

x + b1, (B.10)

where W 1T : R4 æ R3 is the transposed matrix of W 1 (i.e. matrix with its rows and
columns swapped). Layer 2 can be similarly defined as the function f 2 : R4 æ R2,
with the j-th position element in its output given by

ŷj = (
4ÿ

i=1
zi · w2

i,j
) + b2

j
, (B.11)

and re-written using matrix multiplication as

ŷ = f 2(z) = W 2z + b2. (B.12)

Thus, a fully-connected layer linearly combines an input tensor with learned
parameters: a weights tensor (i.e. W 1 and W 2) and a bias tensor (i.e. b1 and b2).

As in this example, the input and output tensors of a fully-connected layer are
most commonly vectors (i.e. 1st-order tensors); thus it follows that the weights
tensor is a matrix (a.k.a. weights matrix) and the bias tensor is a vector (a.k.a. bias
vector or bias term).

General form. Now, we can write a general function ffc : RM æ RN with weight
matrix W œ RM◊N and bias term b œ RN to describe a fully-connected layer that
takes as input M -D vectors and outputs N -D vectors:

ffc(x) = W T x + b. (B.13)

By definition, the j-th element of the output tensor z = ffc(x) is given by

zj = (
Mÿ

i=1
xi · wi,j) + bj. (B.14)

Working out an example. Finally, let us work out an example. Let us define
the weight matrices in fig. B.1 as follows:

W 1 =

S

WU
0 1 2 3
1 2 3 4
2 3 4 5

T

XV , W 2 =

S

WWWU

0 1
1 2
2 3
3 4

T

XXXV , (B.15)

150 B.2. Convolutional neural networks

and let both bias vectors be filled with 1. Then, the transposed weight matrices
are as follows (it’s easier to reason with the transposed matrices):

W 1T =

S

WWWU

0 1 2
1 2 3
2 3 4
3 4 5

T

XXXV , W 2T =
C
0 1 2 3
1 2 3 4

D

. (B.16)

Now, consider the input vector x =
Ë
≠2 0 1

È
.

Using the above equations, we compute the intermediate tensor z to be as follows:

z =

S

WWWU

≠2 · 0 + 0 · 1 + 1 · 2
≠2 · 1 + 0 · 2 + 1 · 3
≠2 · 2 + 0 · 3 + 1 · 4
≠2 · 3 + 0 · 4 + 1 · 5

T

XXXV =

S

WWWU

2
1
0

≠1

T

XXXV , (B.17)

and the output tensor ŷ to be as follows:

ŷ =
C
2 · 0 + 1 · 1 + 0 · 2 + ≠1 · 3
2 · 1 + 1 · 2 + 0 · 3 + ≠1 · 4

D

=
C
≠2
0

D

. (B.18)

B.2.1.2 Convolutional layers

In contrast to a fully-connected layer, which applies a unique weight to every input
neuron, a convolutional layer applies the same set of weights (a.k.a. convolu-

tional filters or convolutional kernels) to “neighborhoods” of input neurons. This
property of sharing weights makes convolutional layers well-suited for handling
visual information, as each filter can be tuned to recognize a particular pattern
(i.e. oriented edges, cat ear).

1D convolution. To build intuition, let us consider a simple example of a
1D convolution.11

In this example, the same weights vector w is applied to small neighborhoods
comprised of 3 input neurons each (i.e. (x1, x2, x3), (x2, x3, x4), and (x3, x4, x5)) in
a “sliding window” fashion. To compute the value of an output neuron (i.e. z2),
for every input neuron connected to it, multiply its value with the value of its
connecting weight (i.e. given by the line color), and sum up the products as follows:

zi = xi · w1 + xi+1 · w2 + xi+2 · w3. (B.19)
11Here, the dimensionality refers to the number of ways the weight moves. In this case, it can

only move along one direction (i.e. left-to-right). A 2-D convolution is used for images and can
move along 2 dimensions (i.e. up-and-down and left-to-right).

B. Primer on convolutional neural networks 151

x1

z1

x2 x3 x4 x5

w1 w2 w3

z2 z3
w

x

z

Figure B.2: 1D convolution. Notice how weights are re-used (i.e., line colors are
repeated) and applied in a “sliding window” fashion.

Now, let’s work out an example. Suppose the input and weight vectors are
given as follows:

x =
Ë
1 6 5 4 1

È
, w =

Ë
≠1 0 1

È
, b = 0. (B.20)

Then, the resulting output vector is

z =

S

WU
1 · ≠1 + 6 · 0 + 5 · 1
6 · ≠1 + 5 · 0 + 4 · 1
5 · ≠1 + 4 · 0 + 1 · 1

T

XV =

S

WU
4

≠2
≠4

T

XV . (B.21)

This particular convolutional filter detects the presence and orientation of 1D
“edges” (i.e. change in value within a neighborhood of neurons): A positive output
neuron denotes an input neighborhood where the leftmost input neuron is smaller
than the rightmost input neuron (i.e. value increases when comparing the left neuron
with the right neuron), a negative output neuron denotes the reverse (e.g. value
decreases), and the magnitude of the output neuron denotes the magnitude of the
di�erence in values between the two outer input neurons.

2D convolution. For images, a 2D convolution is typically used, as images are
two-dimensional. Similarly, to compute a value in the output tensor, consider the
dot product between a convolutional filter (i.e. w œ R3◊Hk◊Wk) and a same-sized
neighborhood in the input tensor.

In this example, we show one filter and the resulting output tensor slice (i.e. 3D-
tensor with a channel depth of 1). Typically, a convolutional layer applies more
than one filter. Because every filter produces an output tensor slice, the number of
channels in the output tensor is equal to the number of filters used.

Thus, a 2D convolutional layer can be defined as f2DConv : RCi◊Hi◊Wi æ
RCo◊Ho◊Wo with weights tensor W œ RCo◊Ci◊Hk◊Wk and, if used, bias tensor b =
RCo.12

12For conciseness and clarity, we do not use a bias tensor in the convolution examples.

152 B.2. Convolutional neural networks

3

Wi

Hi

3 x Hi x Wi image

1 x Ho x Wo output slice

3 x Hk x Wk filter

1

Wo

Ho

3

Wk

Hk

Figure B.3: 2D convolution.

Then, given a neighborhood in the input tensor that has the same spatial
dimensions as the filters, i.e. xÕ œ RCi◊Hk◊Wk , its corresponding output value
can be computed as follows:

zk = (
Ciÿ

c=1

Hkÿ

i=1

Wkÿ

j=1
wk,c,i,jx

Õ
k,c,i,j

) + bk, (B.22)

where zk œ R is the output value that corresponds to applying the k-th filter
to the neighborhood xÕ

In addition to filter size and the number of filters, there are a few other
hyperparameters for convolutional layers. Stride refers to the step size with which
to “slide” the filter across the input tensor. Padding refers to adding additional
input values (i.e. “padding” the input). The most common value with which to
pad an input tensor is 0 and is known as zero-padding. In the examples shown
here, we set the stride to be 1 (i.e. we shift the filter by an increment of 1) and
use no padding. In the following examples, we modified the earlier 1D example

B. Primer on convolutional neural networks 153

(fig. B.2) first to use zero-padding with a padding width of 1 (i.e. padding with
1 extra value on each side) and second to use a stride of 1.

x1

z2

x2 x3 x4 x5

z3 z4

00

z1 z5

x1

z1

x2 x3 x4 x5

z2

Figure B.4: More 1D convolution examples. Left: An example with padding
width of 1 on each side. Right: An example with a stride of 2.

Now, we can write a formula for calculating the spatial size of the output tensor.
To calculate the length of one output dimension O, we can use the following:

O = I ≠ K + 2P

S
+ 1, (B.23)

where I is the input size, K is the length of the filter, S is the stride step size,
and P is the padding width, all along the same corresponding dimension. If the
result is a fraction, round up.

B.2.2 Other layers

In addition to layers that linearly combine tensors with learned weights, there
are several kinds of layers that enable a CNN to filter information such that only
relevant features are propagated.

B.2.2.1 Activation layers

An activation layer typically applies a non-linear,13 scalar function g : R æ R to
every element in the input tensor, thereby outputting a tensor of the same size.

The most common activation function used in modern CNNs is the ReLU
function, which stands for rectified linear unit, and is defined as follows:

g(x) = max(x, 0). (B.24)

In practice, the ReLU function allows a CNN to disgard non-relevant information
by setting all negative elements in an input tensor to 0. Because activation layers

13A linear relationship is one in which changes in the output are directly proportional to changes
in the input. For instance, the function f(x) = 2x is linear while the function f(x) = max(x, 0) is
non-linear. This is because there are times when x varies (i.e. when x < 0) and the variation in
the input is not reflected in the output.

154 B.2. Convolutional neural networks

typically immediately follow linear layers, a CNN can adapt filters in the preceding
linear layer to fire positively when they recognize relevant features. Then, the
following ReLU layer could “forget” neurons that captured irrelevant features.

Now, we can take a look at a simple example. Given an input tensor

x =

S

WU
≠2 1 2
0 ≠1 1
3 ≠1 2

T

XV , (B.25)

the result of passing it through a ReLU layer would be as follows:

z =

S

WU
0 1 2
0 0 1
3 0 2

T

XV . (B.26)

B.2.2.2 Pooling layers

A pooling layer forces information to be compressed spatially. Similar to 2D
convolutions, which operate on spatial neighborhoods of elements in an input tensor,
most pooling layers operate on neighborhoods in the input.

The max pooling operation chooses the maximum value from a set of inputs
(i.e. spatial neighorhood) as the output value, while average pooling sets the
output value as the average (i.e. mean) of a set of input values.

Because pooling layers are typically used to compress information spatially,
they usually leave the channel dimension unchanged and apply pooling functions
(i.e. max or average pooling) to spatial neighborhoods of tensor slices, that is, they
are applied to every channel independently.

Now, we can define the pooling functions precisely. Given xÕ œ RHk◊Wk , a
tensor slice representing a spatial neighborhood, max pooling and average pooling
are defined as

gmaxpool(xÕ) = Hkmax
i=1

Wkmax
j=1

xÕ
i,j

and gavgpool(xÕ) = 1
Hk · Wk

Hkÿ

i=1

Wkÿ

j=1
xÕ

i,j
. (B.27)

Finally, let’s work through a simple example.
Given an input tensor slice as follows:14

x =

S

WWWU

≠2 1 ≠3 4
3 ≠2 0 ≠1
2 1 ≠1 ≠2
0 ≠2 1 ≠3

T

XXXV . (B.28)

14For simplicity, we are considering an input tensor with only one channel. For tensors with
more than one channel, the same procedure would be applied to every channel in the input tensor.

B. Primer on convolutional neural networks 155

The result of passing it through a max pooling layer that uses a 2 ◊ 2 neigh-
borhood is as follows:

z =

S

WU
3 1 4
3 1 0
2 1 1

T

XV . (B.29)

B.2.2.3 Regularization layers

There are also a number of layers that regularize the activation tensor (e.g. via
dropout, batch normalization, etc.). For brevity, we only describe dropout.

A dropout layer randomly “drops” (i.e. sets to 0) input values and can be
described as applying the following function g : R æ R element-wise (i.e. to
every input value):

g(x) =

Y
]

[
x p Æ 0.5,

0 otherwise,
(B.30)

where p is a unique random number generated afresh every time the function is
applied. The result is that approximately half of the activation tensor is “dropped”.
This simple technique forces the model not to be too dependent on any one feature,
as it will be dropped half of the time. This tends to improve a model’s robustness
(i.e. ability to perform well under a variety of conditions) and overall performance.

B.2.3 Putting it all together

Now that we’ve discussed various components of a CNN and aspects of a deep
learning set-up, let’s put this knowledge all together.

B.2.3.1 Model architecture

A CNN architecture refers to the specific configuration of layers and their settings
(i.e. filter size, number of output channels, stride, padding).

In fig. B.5, we show a diagram detailing the AlexNet (Krizhevsky et al., 2012)
architecture, which was one of the earliest demonstrations of the power of CNNs
on object classification. This model uses around 61 million parameters (i.e. total
number of scalars in all weight and bias tensors). Because a CNN is typically
highly-parameterized, it is not feasible to understand a model simply by examining
its parameters, due to the sheer volume of them.

Other popular CNN architectures include VGG networks (e.g. VGG16) (Si-
monyan et al., 2015), GoogLeNet (Szegedy et al., 2015), and residual networks
(e.g. ResNet50) (He et al., 2016).

156 B.2. Convolutional neural networks

B
lock 1

B
lock 2

B
lock 3

B
lock 4

B
lock 5

C1
R1

P1
C

2
R

2
P

2
C

3
R

3
C

4
R

4
C

5
R

5
P

5
F7

R7
F6

D7
D6

R6
F8

S6

R
eshape (S

)

D
ropout (D

)

Fully-connected (F)

R
eLU

 (R
)

M
ax P

ool (P
)

2D
 C

onvolution (C
)

4096

1000

4096

9216

256x6x6
(3x3, s2)

256x13x13
(3x3)

256x13x13
(3x3)

384x13x13
(3x3)

192x13x13
(3x3, s2)

192x27x27
(5x5)

64x27x27
(3x3, s2)

64x55x55
(11x11, s4)

B
lock 6

B
lock 7

3x224x224

F
ig

u
r
e

B
.5

:
A

le
x

N
e
t

a
r
c
h

it
e
c
t
u

r
e
.

