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Abstract
In the past decade, deep learning has fueled a number of exciting developments in
artificial intelligence (AI). However, as deep learning is increasingly being applied
to high-impact domains, like medical diagnosis or autonomous driving, the impact
of its failures also increases. Because of their high complexity (i.e. they are
typically composed of millions of parameters), deep learning models are difficult
to interpret. Thus, there is a great need for tools that help us understand how
such models make their decisions. In this thesis, we introduce several methods for
understanding convolutional neural networks (CNNs), the class of deep learning
models that is typically applied to visual data — i.e. images and videos. Our
techniques span three approaches to understanding a model: 1. describing the
relationship between its inputs and outputs; 2. characterizing correlations between
a model’s inputs and its internal representation; and 3. using visualization tools
to easily and efficiently explore aspects of a model.

First, we tackle the attribution problem of identifying the parts of a model’s
input (i.e. image regions) that are most responsible for its output decision. We
present two techniques — meaningful perturbations and extremal perturbations –
which work by perturbing the input image and learning the regions that when
edited out, most affect the model’s prediction. Second, we seek to understand
how semantic concepts, from different kinds of textures to various kinds of objects,
are recognized by network parameters (a.k.a. neurons). We introduce Net2Vec, a
novel paradigm that reveals how combinations of internal neurons encode specific
concepts. Lastly, similar to how a stethoscope is used to explore the internal
behavior of different parts of the body, we introduce a novel visualization technique
— interactive similarity overlays — that allows an AI researcher or developer
to quickly and easily explore the internal representation of a model. Together,
these methods enable us to scientifically understand the external behavior of
CNNs as well as their inner workings.
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Abstract

In the past decade, deep learning has fueled a number of exciting developments in
artificial intelligence (AI). However, as deep learning is increasingly being applied
to high-impact domains, like medical diagnosis or autonomous driving, the impact
of its failures also increases. Because of their high complexity (i.e. they are typically
composed of millions of parameters), deep learning models are difficult to interpret.
Thus, there is a great need for tools that help us understand how such models
make their decisions. In this thesis, we introduce several methods for understanding
convolutional neural networks (CNNs), the class of deep learning models that is
typically applied to visual data — i.e. images and videos. Our techniques span
three approaches to understanding a model: 1. describing the relationship between
its inputs and outputs; 2. characterizing correlations between a model’s inputs
and its internal representation; and 3. using visualization tools to easily and
efficiently explore aspects of a model.

First, we tackle the attribution problem of identifying the parts of a model’s input
(i.e. image regions) that are most responsible for its output decision. We present
two techniques — meaningful perturbations and extremal perturbations – which work
by perturbing the input image and learning the regions that when edited out, most
affect the model’s prediction. Second, we seek to understand how semantic concepts,
from different kinds of textures to various kinds of objects, are recognized by network
parameters (a.k.a. neurons). We introduce Net2Vec, a novel paradigm that reveals
how combinations of internal neurons encode specific concepts. Lastly, similar to
how a stethoscope is used to explore the internal behavior of different parts of the
body, we introduce a novel visualization technique — interactive similarity overlays
— that allows an AI researcher or developer to quickly and easily explore the internal
representation of a model. Together, these methods enable us to scientifically
understand the external behavior of CNNs as well as their inner workings.
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1.1 Motivation

In the past decade, an explosion of exciting developments in artificial intelligence
(AI) has been fueled by deep learning.1Notable examples include advances in medical
imaging, machine translation,2 and self-driving cars. However, as deep learning
is increasingly being applied to applications with a high impact on society, the
impact of its failures also increases. For instance, if there is a medical misdiagnosis
or a car crash, such tools could offer an explanation and suggest a fix for the
failure. Thus, there is a great need for tools that help us understand what AI
systems are actually doing.

1Deep learning refers to the use of an artificial neural network composed of many layers.
2Machine translation is the automated process of translating from one human language to

another.

1



2 1.2. Research themes, contributions, and outline

We would also want to ensure that protected features such as race or gender are
not being used to make decisions. In the case of early machine translation work,
researchers noticed quickly that the learned representations reflected the biases
that occur naturally in human data. For example, “doctor” became a gendered
concept that was more closely aligned to male pronouns (Bolukbasi et al., 2016;
Johnson, 2018; Johnson, 2020).

Given the high complexity of modern AI systems,3 they are not easily inter-
pretable (i.e. easy to understand). Currently, AI systems are typically evaluated
based on their performance on well-curated datasets.4 While performance metrics
provide a concise signal of whether a model behaves as expected, they fail to explain
a model’s decision-making process. Thus, such interpretability tools would help us
develop trust in these automated systems as well as understand their failure modes.

1.2 Research themes, contributions, and outline

In this section, we summarize the research contributions and structure of this thesis.
We first outline the scope of this thesis. Then, we introduce a useful analogy which
we use to explain the research themes that comprise this thesis.

1.2.1 Scope of thesis

In this thesis, we are concerned with understanding a particular kind of machine
learning model: convolutional neural networks (CNNs). This class of models
typically takes as input visual data (e.g. images and videos). Furthermore, we
primarily consider a CNN model that performs object classification on images.5,6

In this setting, a model takes as input an image and must learn to predict the
most dominant object in the image from a set of possibilities (e.g. specific breeds
and species of animals, things commonly found in a kitchen, etc.). That said, our
techniques can easily be adapted to other kinds of image classifiers and extended
to other kinds of neural networks (see chapter 7).

3Deep learning models rely on millions of parameters.
4An example of such a dataset is ImageNet (Russakovsky et al., 2015), a large-scale dataset

of over 14 million images that is most commonly used for object classification, as it provides
image-level labels for 1000 mutually-exclusive object classes (e.g. different breeds of animals).

5See these notes on “Image Classification.”
6See section 7.4.1 for why we primarily study object classification.

https://cs231n.github.io/classification/
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1.2.2 An analogy: the human body

Consider another high-functioning, complex system: the human body. Without
work by the medical and scientific communities, our understanding of the human
body would be quite limited. However, with the development of modern science
and medicine, patients now expect their doctors to be able to diagnose various
ailments. This is made possible by a few kinds of tools used by medical professionals
and researchers.

The first are physical examinations in which a healthcare professional examines
an individual based on their symptoms and performs a few simple, minimally
invasive tests (e.g. reflex tests, eye and hearing exams, allergen tests). These
typically synthesize relevant information based on an observation of symptoms
and responses to external stimuli (e.g. knee jerk reactions, improved eyesight with
prescription lenses, allergic responses).

The second are more advanced medical tests and procedures (e.g. medical
imaging procedures, endoscopic exams). These vary in how invasive they are but
often provide richer information about the internal state of a patient.

The third are medical devices and equipment that enable medical workers to
easily and efficiently explore potential medical problems (e.g. stethoscopes, X-ray
machines). Often, these are readily available, easy to use, and provide rapid results.

This categorization maps neatly and respectively onto the three research themes
that are highlighted in this dissertation and can be described as answering the
following questions about an image classifier :7

1. Observing the external: What is the image classifier “looking at” in an input
image to make its decision?

2. Understanding the internal: How does it encode semantic information, like
textures and objects?

3. Using exploratory tools: How can we easily explore its internal representation?

1.2.3 Theme 1: Observing the external

Analog to medical exams. Like a doctor who performs a medical examination
and observes their patient’s bodily response to different stimuli (e.g. a skin-prick
allergy test, in which a doctor exposes a patient to a series of allergens and observes
which ones cause a reaction), AI researchers and practitioners can similarly gain

7i.e. a CNN that performs object classification.
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Medicine Artificial Intelligence (AI)

Practitioners
healthcare workers software developers

(e.g. doctors, nurses, etc.) (e.g. industry, open-source, etc.)

Researchers
medical researchers AI researchers

(e.g. basic science, clinical work, etc.) (e.g. university labs, industry labs)

Corporations pharmaceuticals, biotech industry digital technology companies

Regulators MHRA in the UK, FDA in the US TBD

Observing external 
symptoms

physical examinations "black-box" interpretability
(e.g. allergen test) (e.g. attribution heatmaps)

Understanding internal 
condition

advanced medical tests and procedures "white-box" interpretability
(e.g. molecular imaging) (e.g. concept vectors)

Using exploratory tools 
to form hypotheses

medical devices and equipment interactive visualizations and interfaces
(e.g. stethoscope) (e.g. interactive similarity overlays)

Figure 1.1: Medical analogy.

insight about a model’s behavior by synthesizing observations of a model’s response
to a variety of stimuli.

Attribution. Consider how one might explain why an image classifier predicted
“golden retriever” as the most dominant object for a particular image.

One way to explain such a prediction is to highlight the parts of the input
(i.e. regions in the image) that are responsible for the model’s “golden retriever”
prediction via a heatmap visualization. This is formally known as the attribution
problem, because it is concerned with attributing the parts of the input that are
responsible for the model’s output.

A natural way to tackle this problem is to learn how to edit the input image
such that only the essential parts of the image are preserved, yet the image classifier
still correctly predicts “Golden retriever.” Or conversely, only the essential parts
are deleted, yet the image classifier now makes an incorrect prediction.

1.2.3.1 Meaningful perturbations

In chapter 3 (Fong et al., 2017), we introduce a novel algorithm — meaningful
perturbations — that learns this essential set of image regions that, when edited,
either preserves or destroys the model’s predictive ability for a given object class
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flute: 0.9973 flute: 0.0007 Learned Mask

Figure 1.2: Meaningful perturbations (Fong et al., 2017). In this example, a
mask is learned (right) and used to edit (i.e. blur) an image (middle) so that the image
classifier’s “flute” prediction is changed from 99% confidence to less than 1% confidence
(left: original image).

(e.g. “golden retriever”). We do this by learning8 an minimal and smooth mask that
is used to perturb (i.e. blur) specific regions in the input image.9,10

A minimal mask is preferred because one possible mask is a one that blurs
the whole image. However, that would be uninformative, as it does not identify
what parts of the image are important to the model. Thus, we want to identify the
minimal, essential set of image regions that are critical to a prediction.

A smooth mask is also preferred because another possible mask is one that
contains a highly unnatural (i.e. unsmooth) pattern that “tricks” the model into
thinking a different object is present (e.g. by “drawing” another object).11 This is
also uninformative, because we are interested in learning what parts of the image
contain positive evidence for the original prediction.

In this work, we also outline a formal framework for conceptualizing explanations
as meta-predictors that predict the behavior of the model for certain stimuli. In
this “explanations as meta-predictors” framework, our learned masks can be seen
as predictions of the regions that most affect a model’s decision-making process
(e.g. if deleted, the model would make an incorrect prediction).

8Formally, we learn the values of the mask via optimization using backpropagation; see ap-
pendix B.1.4 for a primer on optimization and backpropagation for deep learning.

9The values in the mask are constrained to be between 0 and 1, where 1 denotes fully perturbing
a pixel and 0 denotes leaving a pixel as is.

10We replace image regions with a blurred versions of themselves according to the mask. The
mask is the same size as the input image; thus, the amount of blur to apply is denoted by the
corresponding value in the mask for a given pixel (e.g. 1 denotes strongly blurring a pixel, 0
denotes applying no blur). We also explore other kinds of perturbations such as random noise and
a constant value (e.g. the mean pixel value).

11This is closely related to work on adversarial examples (Szegedy et al., 2014; I. J. Goodfellow
et al., 2015), which take real images and make small, inperceptible edits to them such that they
are then misclassified by a model.
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5% 10% 20%

Figure 1.3: Extremal perturbations (Fong et al., 2019a). In this example, several
area-constrained masks are learned (areas in inset boxes). When these masks are used to
blur the original image (right), an image classifier still predicts “mousetrap” with high
confidence, even though it only sees a small portion of the image. Together, these masks
rank image regions in decreasing importance to the classifier (e.g. the mousetrap’s coil is
most important). For clarity, the blurred regions are blacked out.

1.2.3.2 Extremal perturbations

In chapter 4 (Fong et al., 2019a), we introduce another algorithm, named extremal
perturbations, that improves on our previous method in several ways.

First, we introduce the ability to learn area-constrained binary masks12 as
explanations, that is, our method is able to find the X% (e.g. 5%, 10%, etc.) of
the image that is most responsible for the model’s decision.

Second, our extremal perturbations method also leverages a novel mechanism for
ensuring smooth masks.13 In our previous work, we had to trade off the attribution
quality of the explanation (e.g. how well it preserved or destroyed predictive ability)
with its interpretability (e.g. how minimal and smooth it was).14 In our new work, we
eliminate this tradeoff by ensuring by design that our masks are area-constrained and
smooth; thus, we are able to find the best masks based purely on attribution quality.

Third, we extend our work from attributing spatial regions in the input image
to attributing neurons inside the CNN. We do this by we learning the essential set
of neurons that, when preserved, similarly preserve the model’s prediction.

Our channel attribution method is somewhat analogous to optogentic exper-
iments with mice. In these experiments, neurons in a mouse’s brain have been
genetically modified and connected to an external sensor such that they can be

12A binary mask is constrained to only contain 0s and 1s.
13This is done introducing a parametric family of smooth masks.
14This is because we learned mask by minimizing a combination of loss terms: minLdelete +
Lsmooth + Lminimal. This optimization pits the different terms against each other: for instance,
a mask that is very minimal (i.e. low Lminimal) may not be strong enough to destroy a model’s
predictive ability (i.e. high Ldelete).
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controlled by the presence or absence of light.15 In our work, we similarly control
the “expression” of artificial neurons in a CNN using a mask that we learn and
use to perturb neurons.16

Together, these two chapters highlight our work on learning instance-specific
perturbations as explanations that attribute which parts of the input image (or
which intermediate neurons) are responsible for a model’s prediction.

TorchRay. To encourage further research on the attribution problem and in
partnership with Facebook AI Research, we open-sourced TorchRay17 — a PyTorch
package with various attribution methods and benchmarks implemented to support
reproducible research.

1.2.4 Theme 2: Understanding the internal

The second theme is concerned with understanding the internal representation of the
model.

Concept encoding. One of the ongoing debates within both the neuroscience
community and the AI community is how relevant information is encoded in each
community’s learning system of interest — the human brain and a CNN respectively.
One hypothesis is that a specific, relevant semantic concept (e.g. the face of my
grandmother) is encoded by a single (or a few) neurons in my brain.18 Another
hypothesis is that concepts are encoded by populations of neurons (i.e. groups of
neurons), not individual neurons. More formally, these two hypotheses represent
two extremes on a spectrum, ranging from a sparse encoding (i.e. very few neurons
do the work) to a distributed encoding (i.e. many neurons do the work), and beg
the question, “How many neurons are required to encode a single concept?”

Neuron packing. Both research communities are also interested in the inverse
question, “How many concepts does a single neuron encode?” This is informally
known as the “neuron packing” problem,19 as it asks how many concepts can be
“packed” into a single neuron. Answering this question would elucidate whether
neurons tend to be highly specific or multi-purpose.

15See this educational article for more on optogenetics.
16A 1 in a mask “expresses” or allows a specific neuron in a CNN to “fire” as it originally had;

a 0 “blocks” that neuron’s “expression.”
17https://github.com/facebookresearch/TorchRay
18This is formally known as the “grandmother cell” theory.
19I first heard Chris Olah use this phase: see Chris Olah’s research note on “Poly-Semantic

Neurons.”

https://kids.frontiersin.org/article/10.3389/frym.2017.00051
https://github.com/facebookresearch/TorchRay
https://github.com/tensorflow/lucid/issues/122
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An analog to medical imaging. One way to try to answer these two questions
is to observe how neurons respond to specific concepts. This is analogous to
how medical professionals and researchers use molecular imaging to “see” how an
injected, molecular20 stimuli moves through a patient’s body via medical imaging
(e.g. ultrasound, MRI). This kind of imaging allows medical professionals and
researchers to observe where different molecules end up in the human body.

Similarly, one way to understand how concepts are encoded is to “see” which
CNN neurons fire consistently when presented with examples of a specific concept
(e.g. images of golden retrievers). Unlike medical researchers, who have limited
access into a living human body, AI researchers typically have full access to a
CNN, their model of interest.21 One way to do this would be to learn how to
combine neuron firings (i.e. activations) to perform a concept-specific task, such as
classifying whether an image contains a golden retriever or segmenting the image
regions in which a golden retriever appears.

1.2.4.1 Concept vectors

In chapter 5 (Fong et al., 2018b), we present Net2Vec, a novel method for learning
concept vectors that successfully combines activations — by weighting and
summing up individual neuron activations — to perform concept classification
and segmentation. By design, our learned concept vectors assign a numerical weight
to individual neurons that denotes its influence in encoding a particular concept
(e.g. golden retriever). We gain several insights from learning these concept vectors.

First, we quantify how many neurons are needed to encode a specific concept
using concept vectors. By varying the number of neurons used when learning a
concept vector, we can observe when performance on the concept task (e.g. clas-
sification or segmentation) saturates. We find that the number of neurons at
which performance saturates22 varies by concept (e.g. 8 neurons for the “person”
concept vs. 64 for “airplane”23).24

Second, using our segmentation concept vectors, we produce segmentation
masks that highlight the presence of a concept (e.g. “dog”). We show that our
visualization based on combining activity from neuron populations performs better

20Molecules are the smallest units that make up organisms or materials; thus a molecular
stimulus is very small and on the scale of cells.

21The difficulty for AI researchers is not access, but rather interpretability (i.e. how do we make
sense of the millions of parameters (e.g. neurons) we have access to?).

22Performance saturates when using more neurons does not improve performance.
23Number of neurons is out of 256 neurons in a late layer of an image classifier.
24This is similar to work done in Agrawal et al., 2014.
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Figure 1.4: Comparison of segmenting with individual neurons (Bau et al.,
2017) vs. combinations of neurons (Fong et al., 2018b). Here, we show an
example of segmenting a boxer image (right) with the single, best “dog” neuron (left) and
with a combination of neurons using the “dog” concept vector (middle, ours).

(i.e. higher-quality segmentation, see Figure 1.4) and is more robust than that
based on activity from a single neuron.25

Third, we show how concept vectors allow us to compare how concepts are
encoded both within a model and between different models. By performing arithmetic
with concept vectors, we show that CNNs possess a coherent understanding of
concepts and how they interact: for instance, a CNN’s approximate solution of
“sky” to the following arithmetic operations is coherent: “grass” + “blue” − “green”
≈ “sky.” Furthermore, we demonstrate CNNs that learned in similar manners
(e.g. taught to perform the same task) also understood concepts in more similar
ways compared to those that learned in a different manner.26,27

1.2.5 Theme 3: Using exploratory tools

The third theme is concerned with developing visualization tools to enable AI
practitioners and researchers to explore and understand the behavior of AI models
quickly and easily.

An analog to medical equipment. This is analogous to the suite of medical
devices and equipment that healthcare professionals rely on on a daily basis to
help them triage medical issues. Consider the stethoscope, which enables a medical

25We show that Bau et al., 2017’s single neuron visualization typically only produces salient
segmentation masks for images that trigger extremely strong response in a single neuron.

26We quantified concept understanding by measuring the distance between concept vectors and
storing these distances in a similarity metric. We then compared similarity matrices to quantify
how similar the concept understandings of different models were.

27We found that the type of supervision (e.g. fully supervised vs. self-supervised) was one of
the most influential differentiators in a model’s understanding of concepts.
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worker to listen to the internal sounds of the human body. A doctor can easily
use a stethoscope on different locations in search for any abnormal signs. She may
also use other tools (e.g. blood pressure monitor) in tandem with a stethoscope
to provide more rich information about her patient. We desire a similar toolkit
of visualization tools that allows for real-time inspection of a CNN and supports
combining visualization techniques.

Interactive visualizations. In the past few decades, digital technology has
quickly evolved, and the ways we interact with technology have also changed. For
example, we have moved from using a keyboard to interact with a computer terminal
to using a mouse to interact with a graphical user interface. Now, in the era of
mobile devices and virtual assistants, we naturally use touchscreen gestures and
voice commands (e.g. “Hey Alexa, . . . ”). However, as deep learning has rapidly
advanced in the past decade, the ways we interact with and visualize deep learning
models has remained static: most visualizations are non-responsive charts, images,
and videos. Thus, we desire visualization tools that are as responsive and intuitive
to use as today’s touchscreen devices.

Representational similarity. With such a tool, one thing we might want to
explore is how a model considers various inputs. For a CNN, this problem can be
formulated as being able to quickly compare a model’s representation (i.e. neuron
activity) of different image regions. What is similar (and different) between CNN
representations of two images that both contain golden retrievers?

1.2.5.1 Interactive similarity overlays

In chapter 6 (Fong et al., 2021), we present interactive similarity overlays,
a simple, interactive technique that visualizes the representational similarity be-
tween different image patches. Leveraging the power of modern web technology
(e.g. Javascript), given the current image patch that a mouse pointer is hovering
over, we compute similarity scores with other image patches (e.g. in the same image
and/or in other images) and visualize them using heatmaps overlaid on the original
images (see fig. 1.5). Our method allows a user to drive their own exploration
by hovering over various regions of interest; it can also be combined with other
techniques. We demonstrate how to explore a few different phenomena.

First, by visualizing the same image at different locations in a CNN (e.g. network
layers), we demonstrate how our technique can be used to explore and understand
model representations at different depths.
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Figure 1.5: Interactive similarity overlays. Our interactive visualization shows how
similar (or different) a CNN considers different image patches to the current image patch
(highlighted in yellow). The brightness of a patch denotes its similarity to the current
patch (i.e. brighter denotes more similar, while darker denotes less similar). These images
originally appear in Fong et al., 2021.

Second, by visualizing images containing the same object (e.g. a golden retriever),
including generated images, and combining our method with another technique
(i.e. matrix factorization) that highlights the main image components (e.g. the
dog’s head, body, and background), we demonstrate how to explore corresponding,
intra-class28 features across images.

Third, by visualizing the same image that has been systematically transformed
(e.g. rotation, scale) and adding a simple line plot that visualizes the similarity
scores of the same image patch upon transformation, we enable the discovery of
features that are more or less sensitive to geometric transformations.

1.2.6 Focus on research

In the previous sections, we developed specific analogies between diagnostic tools
used by medical professionals and the methods we introduce in this thesis; these
analogies are chosen to help the lay reader understand at a high level the function
of our techniques. However, the purpose of our methods is primarily research.

As noted in fig. 1.1, our role in the AI ecosystem is more analogous to that of
medical researchers and scientists than that of medical professionals. Similar to how
scientists study particular models, learning systems, or pathologies (e.g. a mouse
model, the human visual system, cancer), we aim to add to scientific knowledge by
developing a thorough understanding of a particular kind of AI system (i.e. CNNs).
Just as some medical tools are used both by medical researchers and professionals
(e.g. medical imaging), the methods we introduce can similarly be used by both
AI researchers and practitioners. That said, our primary focus is research, and
we aim to aid AI practitioners as a secondary focus.

28i.e. features within the same object class.
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1.2.7 Structure of thesis

Our thesis is structured as follows: in chapter 2, we provide a thorough review
of work related to ours. In the subsequent chapters (chapters 3 to 6), we present
our original work on meaningful perturbations, extremal perturbations, concept
vectors, and interactive similarity overlays. Finally, we discuss the impact of our
work and promising future directions in chapter 7.

We also include a number of appendices. In appendix A, we provide a primer on
relevant math concepts and notation, and in appendix B, we provide a primer on
CNNs. These first two appendices are meant to be accessible notes to enable a reader
with minimal background knowledge to follow at a high-level the mathematical
details included in this thesis. That said, most of this thesis (i.e. all chapters
except chapters 3 to 6) was written with minimal mathematical notation to encourage
accessibility. In appendix C, we include a few other papers written during the
course of this PhD that are related to the topics of improving CNNs and CNN
interpretability respectively.

Lastly, for readers with little exposure to machine learning, we include an index
of important terms and where they are defined in this thesis.
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In this chapter, we review developments in interpretability1 research on explain-
ing and exploring a CNN model’s behavior using 1. “black-box” visualizations
(section 2.2); 2. “white-box” visualizations (section 2.3); and 3. interactive
visualizations (section 2.4).

These thematic categories broadly correspond with the research themes of the
works presented in this thesis (chapters 3 to 6) and introduced in section 1.2.
To fully follow the details in sections 2.2 to 2.3, we recommend lay readers first

1The research field of interpretability, as it pertains to deep learning, refers to the work
concerned with providing explanations (i.e. interpretations) of the behavior and inner workings of
deep neural networks. See Gilpin et al., 2018 for a broad survey.
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read appendices A to B. Given the scope of this thesis, we focus the bulk of
our literature review on understanding convolutional neural networks (CNNs)
for visual data.

Before diving into detailed reviews of these themes, we first provide a broad
overview on work on explaining AI systems (section 2.1).

2.1 Explainable AI (XAI)

Explainable AI (XAI) research focuses on explaining AI systems.2 Recently, as
deep learning has become the dominant paradigm in AI, explainable AI has become
more important. This is because the success of deep learning comes from its use of
a large number of neural network parameters (i.e. weights), which enable a network
to learn to model well a large amount of data and all the variety in it.3 However, the
highly-parameterized nature of deep neural networks also makes them difficult to
understand. In comparison, some earlier machine learning models such as decision
trees are more naturally interpretable (i.e. easy to understand) because they are
both simpler in nature and intentionally designed to be interpretable.4 This begs
the question, can we have both performance and interpretability?

Broadly, there are three motivations for desiring explainable AI:

1. a scientific desire to understand an AI system;

2. a user-oriented desire to develop trust in an AI system; and

3. an educational desire to learn how to do something from an AI system.

Although these motivations can overlap, most interpretability research can be
primarily categorized under one of these three reasons.

Understanding. The first motivation is similar to that of basic scientists (e.g. neu-
roscientists) studying living organisms: they are motivated to build deep knowledge
about a given species, ranging from its typical behavior to its internal biology.
The focus of this thesis falls under this category, and we develop methods to
both characterize the external behavior of CNNs as well as understand their

2For a high-level overview on XAI, see Gunning, 2017; Samek et al., 2019; Arrieta et al., 2019.
3This also partially explains the surge in popularity of the terms “big data” and “data-driven

machine learning.”
4XAI research is often called interpretability research, and the two phrases are used somewhat

interchangeably; we use “interpretability” to refer to work motivated by a scientific desire to
understand an AI system.



2. Literature Review 15

internal mechanisms. The rest of this chapter will discuss work that is similarly
motivated, so we postpone discussing this direction for now. In this thesis, we use
the term “interpretability” primarily to refer to works motivated by the desire
to understand models.

Trust. The second motivation is rooted in the relationship between consumers
and producers: producers typically aim to persuade a consumer to use a product;
in that quest, they often need to gain the trust of the consumer that the product
will behave as expected. This is also relevant to regulators who aim to discover
whether and how to enforce that products are indeed trustworthy.

In order to develop trust in deep learning, a number of researchers have focused on
developing explanation-producing AI systems (Hendricks et al., 2016; Z. Zhang et al.,
2017; Huk Park et al., 2018). Unlike basic deep learning models, which simply output
a prediction, these systems aim to produce an explanation alongside every prediction.

However, because the primary motivation of such work is to develop trust in
an AI system, such systems may produce interpretable (i.e. easy to understand)
explanations that engender trust but do not faithfully (i.e. accurately) explain the
actual behavior of the model. For example, a seasoned doctor may provide a short
and interpretable explanation for their advice on a suggested diagnosis or treatment
that may or may not fully capture their reasoning. This is because the purpose of
the explanation is primarily to develop trust with their patient in order to persuade
them that their suggestion is a wise course of action.

This apparent tension between interpretability and faithfulness of an explanation
exists not only for trust-oriented XAI work but also the other two kinds of motiva-
tions for XAI.5 Nevertheless, trust-oriented XAI research needs to be particularly
cognizant of producing faithful explainations, as, depending on the actor, trust
can be often in tension with faithful clarity.6

A number of explanation-producing systems (Brendel et al., 2019; Marcos et al.,
2019) have been thoughtfully and intentionally designed such that the explanation
produced is indeed a faithful explanation of the model’s behavior; these models
are often known as “inherently interpretable” or “interpretable-by-design.” Such
systems tend to be motivated by the desire to present a model whose decision-
making process can be easily understood. Furthermore, a number of techniques

5A few works within the understanding-oriented tradition (Kindermans et al., 2019; Adebayo
et al., 2018) have highlighted shortcomings of interpretability techniques that do not faithfully
explain model behavior; we discuss this further in section 7.1.3.

6Consider the common tension between business and consumer interests.
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originally developed to understand CNN behavior have also be used as explanations
to engender trust (Zhou et al., 2018b; Kim et al., 2018).

See Brundage et al., 2020 for an extensive, accessible discussion on engendering
trust in the AI development process using tools to verify claims about the behavior
of AI systems.

Learning. A third motivation for XAI is a desire to learn from AI systems. As
AI systems increasingly become more powerful, they will likely surpass human
performance on certain tasks. In such scenarios, we may desire humans to learn
skills from AI systems and thus require clear explanations from an AI system on
how to perform a given task. For example, since AI systems have surpassed human
abilities in playing chess and Go,7 humans players have begun to study games played
by AI systems to learn how to improve their own gameplay (Sadler et al., 2019).

Formally, knowledge transfer refers to transferring knowledge about something
(i.e. how to perform a specific skill) from one entity to another (e.g. humans teaching
other humans, AI systems teaching AI systems, humans teaching AI systems, AI
systems teaching humans). Thus far, because AI systems — particularly robotic
systems — have lagged behind humans in an number of tasks, most work has
focused on transferring knowledge from humans to AI systems — e.g. teaching
robots how to manipulate objects from human demonstration) (Skubic et al., 2000;
Lee, 2017) — as well as transferring knowledge from strong AI systems to weaker
ones — e.g. to compress the knowledge of a powerful AI model into one that can
be run on a mobile device (Hinton et al., 2015; Cheng et al., 2017).

Another related topic is human-machine collaboration, in which humans and
machine work together to accomplish various tasks that are difficult to accomplish
on their own. Several XAI works fall under the category of developing “human-in-
the-loop” AI systems, in which humans collaborate with an AI system (Kim, 2015;
Lage et al., 2018), or “human-aligned” AI systems, in which models perform in a
way more aligned to how humans make decisions (Scheirer et al., 2014; Fong et al.,
2018a; Ross et al., 2017; Lage et al., 2018; Selvaraju et al., 2019).

Although there is relatively less emphasis on teaching humans to learn from
AI systems in comparison to other XAI topics, some work has been done in this
space, primarily in the form of intelligent tutoring systems, some of which use AI

7Similar to chess, Go is a two-player, abstract strategy board game that was invented in China
over 2,000 years ago. See the Wikipedia article on “Go (game).”

https://en.wikipedia.org/wiki/Go_(game)
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to provide individual instruction to learners (Self, 1988; Hämäläinen et al., 2006).8

In conclusion, there are a variety of motivations for desiring explanations of and
from AI models. In this thesis, we focus on explanations aimed at understanding
the external behavior and inner workings of CNNs, one of the most popular state-
of-the-art AI models today.

2.2 “Black-box” visualizations explaining exter-
nal CNN behavior

“Black-box” explanations aim to characterize a model’s behavior without accessing
its inner workings (i.e. by treating it like a black box). They do this by reasoning
the relationship between a model’s inputs and outputs.

An instance explanation (a.k.a. local explanation9) is an explanation of a model’s
behavior on a particular example and is arguably the most well-known, black-box
visualization technique.10 For visual data, such an explanation most commonly
takes the form of a heatmap that highlights what image regions are a responsible
for a given prediction (see fig. 2.1).
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Figure 2.1: Examples of attribution heatmaps. Here, we show several saliency
maps generated by different attribution methods to explain a CNN’s “chocolate sauce”
prediction (top row, 1st column: original image, with the ground truth bounding box in
red). Top row: Fong et al., 2017; Simonyan et al., 2014; Springenberg et al., 2015; bottom
row: J. Zhang et al., 2018; Selvaraju et al., 2017; Zeiler et al., 2014. Images originally
appeared in Fong et al., 2017.

8See the Science Direct article on “Intelligent Tutoring System” and the Wikipedia article on
“Intelligent tutoring system.”

9A local explanation refers to one that explains how a model locally behaves around a specific
input example.

10Other kinds of black-box visualizations typically explore the global relationship between model
inputs and outputs; we discuss examples of such work in section 2.4.

https://www.sciencedirect.com/topics/computer-science/intelligent-tutoring-system
https://en.wikipedia.org/wiki/Intelligent_tutoring_system
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Most attribution heatmaps — a.k.a. saliency maps — are generated in one
of the following ways: 1. by visualizing a signal that has been propagated through
the network; 2. by perturbing the input and observing the resultant effect on the
model’s output; and 3. by approximating the model’s decision for a given example
using an arguably more interpretable model.
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Figure 2.2: Overview of attribution methods. Saliency map techniques are
organized by methodology (see section 2.2). Bolded work is ours (see chapters 3 to 4);
italicized work is discussed in section 7.1.

2.2.1 Propagation-based methods

Propagation-based saliency techniques are the earliest and arguably most popular
class of attribution methods for CNNs. This is because they are fast to compute,
as they usually require only a single forward and backward pass through a network.
These methods typically visualize a backpropagated signal (i.e. a gradient signal)
and/or a forward-propagated signal (i.e. an activation tensor).11

2.2.1.1 Visualizing the gradient

The first of these methods, Simonyan et al., 2014’s gradient visualization, focuses
on visualizing the gradient of a network’s output with respect to the input:12,13

∂Φc(x)
∂x

. (2.1)

Intuitively, the gradient visualizes how sensitive the output score, Φc(x), is to a
small change in each pixel of the input image.14 Visually, gradient visualizations

11Forward propagation of an input (e.g. an image) to a particular layer of a network yields a 3D
activation tensor. Backward propagation (a.k.a. backpropagation) of an output to a network layer
yields a 3D gradient tensor.

12Here, Φc : R3×H×W → R is the prediction of CNN Φ for class c and x ∈ R3×H×W is a RGB
image. See appendix A.7 for more details about the notation used in this thesis.

13In practice, Simonyan et al., 2014’s gradient method visualizes the magnitude of the maximum
color channel k: Grad ::= maxk|∂Φc(x)

∂x |.
14This is also known as a local explanation, as it explains the behavior of a model for a small,

local neighborhood around the given input x.
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are often quite noisy (see “gradient” example in fig. 2.1; best viewed online with
zoom); thus, several subsequent works aim to reduce the noisy appearance and
improve the visual quality of heatmaps.

Several early works, namely DeConvNet (Zeiler et al., 2014) and Guided
Backprop (Springenberg et al., 2015)15 do this by emphasizing the spatial locations
that would positively improve the network’s prediction (compare “guided” vs.
“gradient” in fig. 2.1). In practice, this involves modifying the backpropagation
rule for ReLU layers16 such that the backpropagated gradient is only preserved
for such spatial locations (see fig. 2.3).

a) b)

c)
activation:

backpropagation:

 backward 
'deconvnet':

       guided 
backpropagation:

Figure 2.3: Overview of Gradient (Simonyan et al., 2014), DeConvNet (Zeiler
et al., 2014), and Guided Backprop (Springenberg et al., 2015). To improve
the quality of the gradient (a.k.a. backpropagation) visualization, deconvnet and guided
backprop modify the backpropagation rule for ReLU layers. (a) A backprop-based
heatmap R0 is constructed from information in a backward pass through a CNN. (b)
Examples of how several methods apply different backward rules for ReLUs. (c) Definitions
of backward rules for ReLU layers used by different methods. f li refers to the activation
at location i after layer l; Rli refers to the backpropated signal at location i after layer l.
Images reproduced with permission of Springenberg et al., 2015.

2.2.1.2 Mitigating gradient saturation

Another research stream seeks to improve the visual quality of attribution heatmaps
by addressing the problem of gradient saturation. Whereas the gradient measures the
local sensitivity of a feature (i.e. the sensitivity of the output with respect to a small

15Mahendran et al., 2016a’s SaliNet method is equivalent to Springenberg et al., 2015’s guided
backprop.

16See appendix B.2.2 for more on the ReLU layer.
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change in a feature), such as a pixel or spatial region in the input image, there are
times when a feature may be globally important, yet its gradient is locally saturated.
Consider a fully trained network, which typically makes highly confident predictions
(e.g. 90% softmax probabilities are not uncommon). In this case, the gradient step
to improve highly confident predictions will likely be small (see fig. 2.4a).

A number of techniques — e.g. Layer-wise Relevance Propagation (LRP)
(Bach et al., 2015), Excitation Backprop (J. Zhang et al., 2018), and DeepLIFT
(Shrikumar et al., 2017) – address this problem by backpropagating a relevance
signal signal instead of a gradient. This relevance signal preserves a conservation
principle; that is, the relevance signal should always sum to 1 at any point while it
is being backpropagated. In order to do so, these methods must override the default
rules used for backpropagating the gradient and introduce an extensive suite of
new rules for every kind of layer in a given network. These methods differ from
one another in their choice of how to compute the relevance signal.17

Another set of methods (Sundararajan et al., 2017; Smilkov et al., 2017b;
Sturmfels et al., 2020) tackles the gradient saturation problem by integrating or
averaging the gradient over a number of choices for the input image in order
to better capture the global effect of a pixel’s contribution.18 In contrast to
relevance propagation techniques, which require custom implementations of a
number of backpropagation rules, these expectation-based techniques require no
special backpropagation rules. However, because they integrate or average gradients
of multiple samples and thus require multiple passes through a CNN, these methods
are slower than most propagation-based techniques.

Integrated Gradients (Sundararajan et al., 2017) numerically integrates the
gradients of a network applied to a number of images that linearly interpolate a
baseline input x0 and the input being considered x:19

IG ::= (x− x0)�
∫ 1

0

∂Φc(x0 + α(x− x0))
∂x

dα. (2.2)

For images, a fully black image is used as the baseline. In practice, this means that
the integrated gradients visualization for a given image accumulates the gradient

17That said, one of the variants of LRP, ε-LRP (Bach et al., 2015), is equivalent to excitation
backprop (J. Zhang et al., 2018). The z-rule of LRP is also equivalent to linear approximation
under certain conditions (i.e. network with ReLU activations and max-pooling layers) (Kindermans
et al., 2016).

18These methods could also be categorized as perturbation-based methods; we class them
as propagation-based methods because they more clearly evolved out of the propagation-based
literature.

19� denotes element-wise multiplication.
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(a) Gradient saturation (b) α = 0.02 (c) α = 0.20 (d) α = 1.0

Figure 2.4: Gradient saturation and interpolated images used in integrated
gradients (Sundararajan et al., 2017). (a) The top chart plots a CNN’s “goldfinch”
prediction as a function the input image’s intensity (controlled by α); this shows that the
prediction saturates (i.e. plateaus) around α = 0.1. The bottom chart shows that the
gradient is small for α > 0.1. (b-d) In the top row, we show images that are linearly
interpolated between a baseline image (i.e. black image) and an image containing a
goldfinch (rightmost column; see eq. (2.2)). In the bottom row, we show the gradient
visualization for the “goldfinch” class for each interpolated image. We see that the gradient
is most salient for α = 0.02, which corresponds to where the gradient is large in (a).
We also notice that the visualizations for α = 0.20 and α = 1.0 are very similar; this is
because the gradient is small for α > 0.1 (see (a)). Images reproduced with permission
of Sturmfels et al., 2020.

when scaling the intensity of the original image, where α represents the intensity
scaling factor (see fig. 2.4b-d).

Figure 2.5: Interpolated images and gradients used for expected gradi-
ents (Sturmfels et al., 2020). Top: we show examples of the goldfinch image
interpolated with random dataset images and with random α — i.e. x0 + α(x − x0)
in eq. (2.3)). Bottom: we show the corresponding gradient visualizations (Simonyan et al.,
2014). Images reproduced with permission of Sturmfels et al., 2020.
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Seeking to improve upon integrated gradients, Sturmfels et al., 2020 explore the
space of possible baselines for images and show that integrated gradient heatmaps
are dependent on the choice of the baseline image. To mitigate this effect, Sturmfels
et al., 2020 introduce Expected Gradients. In contrast to integrated gradients,
which interpolates between the black image and the image of interest, expected
gradients accumulates gradients when applying a network to a number of uniformly
random interpolations, α ∼ Uniform(0, 1),20 between a random image in the training
dataset, x0 ∼ D, and the image of interest x:

EG ::= E
x0∼D,α∼U(0,1)

[
(x− x0)� ∂Φc(x0 + α(x− x0))

∂x

]
. (2.3)

See fig. 2.5 for examples of interpolated images and fig. 2.6 for a comparison with
the gradient and integrated gradients methods.

(a) Image (b) Gradient (c) Integrated (d) Expected

Figure 2.6: Comparison of gradient (Simonyan et al., 2014), integrated
gradients (Sundararajan et al., 2017), and expected gradients (Sturmfels et al.,
2020). Here, we show the final visualizations of these methods. The visualizations for
(c) and (d) were generated according to eq. (2.2) and eq. (2.3) respectively. Images
reproduced with permission of Sturmfels et al., 2020.

Smilkov et al., 2017b introduces SmoothGrad, another expectation-based
method that can be added to any existing attribution heatmap method. SmoothGrad
seeks to improve visual quality of heatmaps (i.e. minimize noise) by adding noise.
In particular, given an image, it creates copies of it and adds Gaussian noise to each
copy. Then, it averages together the heatmap generated for each noisy copy, thereby
“averaging away” the noise present in individual heatmaps (generated by Vc(·)):

SmoothGrad ::= 1
N

N∑
Vc(x + z), where z

i.i.d.∼ N (0, σ2), (2.4)

where z21 is noise tensor the same size as x.
20See appendix A.5 for a primer on random numbers and distributions.
21See appendix A.5 for more on random variables that are independent and identically distributed

(i.i.d.).
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2.2.1.3 Visualizing with activations

Another class of propagation-based methods incorporates forward-propagated
activations into their visualizations.

Linear Approximation (Kindermans et al., 2016) is arguably the simplest
technique that uses activations:22 it visualizes the “input× gradient” at a specific
point in a CNN (i.e. at the input image or at an intermediate convoutional layer,
where “input” is an activation tensor):

LinearApprox ::=
∑
k

Φl
k(x)� ∂Φc(x)

∂Φl
k(x) . (2.5)

Whereas the gradient visualization highlights spatial locations that a classifier’s
prediction is most sensitive to (i.e. changes in those locations would significantly
affect the prediction), the linear approximation highlights spatial locations that
both contain salient features (i.e. strong activations) and decision-sensitive features
(i.e. strong gradients).

Another method eschews gradients entirely and combines activations and fully-
connected weights. Given a CNN that is comprised of convolutional blocks followed
by a Global Average Pooling (GAP) layer and a single fully-connected (FC) layer,
Class Activation Maps (CAM) (Zhou et al., 2016a) linearly combines23 activa-
tions from the last convolutional layer, weighting them with their corresponding
class-specific FC weights:

CAM ::=
∑
k

wckΦl
k(x), (2.6)

where k denotes the index of a channel, Φl
k ∈ RHl×Wl denotes the spatial activation

slice for channel k, and wck ∈ R denotes the fully-connected weight connecting
channel k to output class c. Intuitively, CAM highlights the spatial locations that
contain class-relevant features (see fig. 2.7).

Grad-CAM (Selvaraju et al., 2017) extends CAM by generalizing the method
to most CNN architectures, that is, those with convolutional blocks followed by fully-
connected layer(s). Instead of using fully-connected weights to weight activations,
Grad-CAM uses the gradient of the output class w.r.t. the activations at the last
convolutional layer, after it has been globally averaged:

Grad-CAM ::= ReLU
(∑

k

αck · Φl
k(x)

)
, where αck = GAP

(
∂Φc(x)
∂Φl

k(x)

)
. (2.7)

22The linear approximation visualization is closely related to the first-order Taylor expansion.
23See appendix A.4.1 for a primer on linear combinations.
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Figure 2.7: Overview of CAM (Zhou et al., 2016a). A CAM heatmap is generated
by linearly combining each activation slice (e.g. heatmaps with colored borders) with
the corresponding, class-specific fully-connected weight (e.g. w1, w2, . . . , wn). Images
reproduced with permission of Zhou et al., 2016a.

Because CAM and Grad-CAM operate at a late CNN layer, where activations have
low spatial resolution, their visualizations are typically resized24 to match the size
of the input image; this results in their “blobby” appearance (see fig. 2.7). Similar
to DeConvNet (Zeiler et al., 2014), Grad-CAM highlights positive contributions to
a model’s prediction by thresholding the resultant heatmap with a ReLU function.

2.2.2 Perturbation-based methods

Another class of attribution methods is based on perturbations: Typically, an input
image is perturbed numerous times; then, an attribution heatmap is synthesized by
combining these perturbation regions with the corresponding changes to the output
predictions. Unlike propagation-based techniques, perturbation-based methods tend
to be more computationally expensive because they require multiple passes through
a network (e.g. one pass is needed to observe the effects of one perturbation).
Nevertheless, these techniques tend to have a grounded meaning because their
heatmaps often have an explicit and clear interpretation; salient image regions
denote that a model’s output prediction is significantly affected when these regions
are edited. They are often more model-agnostic, in that specific architectures or
model modifications are not required.

Zeiler et al., 2014’s Occlusion method was the first method of this kind. For
this technique, a gray square is systematically moved across an image and the

24CAM and Grad-CAM use bilinear upsampling.
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resulting class score is observed. A heatmap is generated by weighting the locations
of where the gray square was placed with the corresponding class scores (see fig. 2.8).

.
Figure 2.8: Occlusion (Zeiler et al., 2014). To generate an occlusion visualization,
a gray occluder box is moved over an image (top row) in a sliding window fashion and the
changes in the CNN’s predicted score for a particular class (e.g. “pomeranian”) is observed
and synthesized into a heatmap (bottom row). Here, the color of a pixel denotes the
average output score when this pixel is occluded: blue denotes critical image regions that
affect the prediction, as it corresponds with low confidence predictions (e.g. 20%), whereas
red corresponds with high confidence (e.g. 90%). Images reproduced with permission
of Zeiler et al., 2014.

One limitation of the occlusion technique is that only one specific kind of
occlusion is considered: a single, fixed-sized square. In contrast, Zhou et al., 2015’s
Minimal Image method allows for image-specific, variable-sized perturbations to
be considered (see fig. 2.9). Zhou et al., 2015 considers a minimal image to be a
simplified version of an image of interest that captures the essential features needed
(and nothing more) to be correctly classified by a model. To generate a minimal
image, the following steps are taken: 1. image segments are automatically generated;
2. the segment that least impacts the model’s prediction (i.e. least decreases the
class score) is “deleted” from the image; and 3. step 2 is repeated (thereby removing
unimportant image regions in an iterative fashion) until the model misclassifies
the simplified image. In order to generate a smooth and natural-looking minimal
image, Zhou et al., 2015 “deletes” image regions by editing the image in the gradient
domain (Pérez et al., 2003) instead of the image domain.25

In part to consider a wider space of occlusions, Petsiuk et al., 2018 proposed
Randomized Input Sampling for Explanation (RISE). Instead of masking with a

25This is also known as Poisson image editing. See the Wikipedia article on “Gradient-domain
image processing” for more of an explanation.

https://en.wikipedia.org/wiki/Gradient-domain_image_processing
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Figure 2.9: Minimal images (Zhou et al., 2015). Each side-by-side example shows
the original image (left) and its minimal image (right); these were generated using a scene
classifier with respect to the following categories: “bedroom,” “art gallery,” and “dining
room.” Images reproduced with permission of Zhou et al., 2015.

single square (Zeiler et al., 2014), RISE uses random binary masks in which spatial
locations are randomly set to be “on” or “off” (i.e. 0 or 1, see fig. 2.10). Thus, RISE
allows one to consider the effects of multiple, fixed-sized occlusions.

Figure 2.10: Overview of RISE (Petsiuk et al., 2018). The RISE visualization
synthesizes a heatmap from observations of how a CNN prediction changes when image
regions are randomly masked out from the input image (i.e. I �Mi). Images reproduced
with permission of Petsiuk et al., 2018.

Rather that perturbing at the input (i.e. image) level, Cao et al., 2015’s Feed-
back Layers perturb activations: they learn a binary masking layer (a.k.a. feedback
layer) after every ReLU layer that element-wise masks activation tensors. These
binary masks are optimized for a given image through multiple forward and
backward passes through the network such that the target class score is maximized
and that the binary masks are minimal (i.e. are mostly “off” or filled with 0s).
Thus, feedback layers restrict the flow of information such that only class-relevant
information is propagated. Finally, any propagation-based attribution heatmap
can be generated through the feedback layers; Cao et al., 2015 visualize using
the linear approximation technique.
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2.2.2.1 Other applications of perturbations

Outside the realm of interpretability, some works leverage perturbations to improve
weak and fully supervised localization.26,27 While training an object classifier,
Adversarial Erasure (Y. Wei et al., 2017) iteratively “deletes” parts of an image
such that a given class score is minimized. It then uses the deleted image regions
as a coarse training signal to train a segmentation network. Instead of masking
at the input (i.e. image) level, Fast-RCNN (X. Wang et al., 2017) learns to
occlude activations during training such that the class score is minimized. The
network that generates occlusions adapts as an object detection network improves
in performance; X. Wang et al., 2017 show that this adversarial28 training paradigm
improves object detection performance.

Others use perturbations to regularize a network, typically by randomly dropping
out information in the input or at some intermediate part of the network.29 Hide-
and-Seek (Singh et al., 2017) and Cutout (DeVries et al., 2017) both “drop out”
patches in the input image30 in order to improve localization and classification
performance respectively. Other methods occlude activation tensors at some point
within a CNN. Srivastava et al., 2014 introduced Dropout, which is a popular
technique for randomly dropping out individual voxels in an activation tensor and
inspired a number of follow up works. Spatial Dropout (Tompson et al., 2015)
drops out entire spatial slices associated to random filters. DropPath (Larsson
et al., 2017) randomly drops a branch of information flow within a network;
Scheduled DropPath (Zoph et al., 2018) extends this by linearly increasing
the probability a branch is dropped throughout training. Leveraging the insight
that spatial information in natural image is highly structured and locally smooth,

26Localization refers to the task of localizing where an object is in an image (as opposed to
classification, which refers to the simpler task of just naming the dominant object in an image).
Strictly, localization refers to predicting the segmentation mask of an object, while object detection
refers to predicting a bounding box. However, it can also be used to describe both tasks.

27Weak supervision means that the ground truth labels provided are relatively “weaker” than
the expected output. In the case of localization, weak supervision typically refers to image-level
classification labels that name the objects; the locations of objects are not provided. In contrast,
full supervision denotes that the labels used in training are the same as the predicted outputs
(e.g. bounding boxes or segmentation masks for localization).

28Adversarial training refers to any training set-up such that one component aims to improve
performance and another component aims to inhibit performance.

29Regularization refers to techniques to improve the robustness of a model (i.e. make a model
work as expected on more diverse inputs). This is important so that a model does not overfit to
the data used to train it but rather can generalize to novel examples.

30They differ in the way they drop out patches: Hide-and-Seek drops patches out stochastically
from a fixed, super-imposed grid. Cutout drops out a fixed number of patches, randomly choosing
each patch’s position.
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DropBlock (Ghiasi et al., 2018) drops out contiguous patches of voxels, as opposed
to individual voxels as in dropout (Srivastava et al., 2014), and can be viewed
as an extension of cutout (DeVries et al., 2017).

2.2.3 Approximation-based methods

Another class of attribution techniques approximates the local behavior of a model
with an arguably simpler and more interpretable model. The gradient (Simonyan
et al., 2014) and linear approximation (Kindermans et al., 2016) can be viewed
as approximation methods, as they approximate the linear behavior around the
input image. LIME (local intepretable model-agnostic explanations) (Ribeiro et al.,
2016) learns an explicit linear model to approximate the behavior around a given
input. For images, LIME segments an input image into superpixels and then learns
a sparse linear model g that takes as input a vector of 1s and 0s, where each value
corresponds to whether a given superpixel is shown or occluded, and is trained
to approximate the behavior of a CNN. It is trained by sampling perturbations
to the input (i.e. superpixels are randomly turned on and off), and thus can also
be viewed as a perturbation-based attribution method. The weights of g, which
correspond to superpixels, are then presented as the explanation. In theory, other
models beyond linear ones (e.g. random forests) can be used to approximate CNN
behavior; however, in practice, they often are less suitable for visual data.

2.3 “White-box” visualizations of internal CNN
components

In contrast to “black-box” explanations, which typically characterize a model’s ex-
ternal behavior by explaining the relationship between its inputs and outputs,“white-
box” explanations leverage their “white-box” access to the inner workings of a model.

In this section, we survey works that focus on characterizing the internal
components of a CNN. We highlight three main research directions: 1. visualization
techniques that characterize the patterns that highly activate individual CNN filters
and/or combinations of filters; 2. work on describing how semantic concepts are
encoded in the internal representation of a CNN; and 3. research on understanding
how sensitivity or invariant a CNN is to geometric tranformations.
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2.3.1 Visualizing intermediate representations

Numerous works introduce visualization methods that highlight what a single CNN
filter31 “prefers” (i.e. is highly activated by). Many of these techniques have also
been used to characterize what directions in activation space (i.e. combinations of
filters) are selective for. Such works typically use either real examples or generated
ones to describe what a CNN filter or filter direction is excited by.

We first formally define filter directions before preceding to review relevant works.
Given an 3D activation tensor with k channels that is the output of an intermediate
layer in a CNN Φl(·), a filter direction can be defined as a 1D directional vector:

v ∈ Rk. (2.8)

Then, when we say that an image x ∈ R3×H×W is highly activated along a filter
direction, we mean that the dot product between the filter direction and an activation
tensor a = Φl(x) — i.e. 〈v,a〉32 — is large. (i.e. larger than the result of taking
linear combinations with most other natural images). Intuitively, this denotes that
the activation tensor points in a similar direction as the filter direction v A filter
direction can be viewed as describing a specific way of combining individual filters.

To represent a single filter direction using this notation, the filter direction
would be a one-hot vector (a.k.a. a natural basis vector) — i.e. filled with 0s except
at a location k, where it is filled with a 1. Intuitively, such a vector denotes the
direction that corresponds with filter k.

2.3.1.1 Visualization via real examples

Several works use real examples to describe the patterns that a filter or filter direction
is highly activated by. Zeiler et al., 2014 show the image patches (a.k.a. top
activated patches) that most activated a given filter as well as visualizing a
DeConvNet attribution heatmap w.r.t. the given filter.33 Zhou et al., 2015 builds
on Zeiler et al., 2014 by learning the empirical receptive field for a given filter.
They identify the top activated images for a given filter, extensively occlude them

31In this dissertation, “filter,” “unit,” “feature,” and “channel” are used interchangeably to
describe either the non-spatial dimension of an activation tensor or the set of corresponding
convolutional weights that corresponds to that activation dimension. Precise usage would probably
refer to the weights as either “filters” or “units” and to the associated output of those weights as
a “channel” or “feature.”

32If a has spatial dimensions (i.e. 3D tensor), then each scalar in v is broadcast to all spatial
locations in each corresponding channel.

33Although attribution heatmaps are typically computed with respect to an output class unit,
they can be computed with respect to any component of a model, including an intermediate filter.
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and observing which regions most affect that filter’s output activation — in a
similar fashion to Zeiler et al., 2014; DeVries et al., 2017; Petsiuk et al., 2018
— and then summarize these effects in a heatmap. Using this technique, Zhou
et al., 2015 also segments images based on their empirical receptive fields to
highlight the regions that most activate a given unit. Bau et al., 2017 introduced
Network Dissection, another technique that produces filter-specific segmentations
of images. Using an auxiliary dataset with annotated semantic concepts, Bau
et al., 2017 “probe” a network by quantifying the ability of thresholded, extremal
filter activations (i.e. 99.5% quantile) to segment annotated concepts. These
filter-based segmentations are then used to visualize how a unit is selective for
a given concept (see fig. 2.11).

Figure 2.11: Examples from Network Dissection (Bau et al., 2017). We show
real examples for which a single filter is highly activated and consistently corresponds with
a semantic concept (e.g. top: “faces”; bottom: “staircase railings”). The segmentation
masks are thresholded activations from conv5 filters 137 (top) and 52 (bottom) of a scene
classifier. Such visualizations suggest individual filters correspond with specific, semantic
concepts. Images reproduced with permission of Bau et al., 2017.

2.3.1.2 Visualization via generated examples

Most work on visualizing filters or filter directions generate examples that highly
activate a filter or filter direction. These works collectively known as feature
visualizations, as they typically visualize a CNN feature (i.e. filter) or direction
in feature space.

Broadly, there are three main kinds of feature visualizations that differ based
on what they aim to visualize: 1. activation maximization, which visualizes an
example that maximally activates a filter or filter direction; 2. feature inversion,
which visualizes the CNN representation (i.e. whole activation tensor) of an image
at a given layer; and 3. caricatures, which augments an image with exaggerated
features that highly activate the feature directions in the original image.
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Furthermore, there are two main ways of generating feature visualizations: 1.
via direct optimization, in which an image is directly learned (i.e. image pixels
are optimized); and 2. via a generator network, which generates the feature
visualization image and acts as a strong natural image prior (i.e. encourages
the image to look realistic).

In this section, we first expand on the three basic kinds of feature visualizations
and highlight direct optimization methods. Then, we proceed to discuss works that
use generator networks to produce feature visualizations.

Direct optimization. The earliest feature visualization works directly optimize
the pixels of a generated image.

Instead of showing real image patches that highly activate a given filter, Simonyan
et al., 2014 generate an input image that most activate an output class unit. This
technique is generally known as activation maximization. Intuitively, activation
maximization characterizes the patterns that most activate a feature direction.
This is somewhat analogous to scientific work that correlates the strong neural
activity of a living organism (i.e. a monkey) with specific visual stimuli (i.e. images
of bananas). Figure 2.12 shows examples that maximally activate a variety of
CNN filters from different layers.

Figure 2.12: Activation maximization. Left: We show examples of activation
maximization visualizations for several CNN layers. Notice how the visualizations become
more complex as the layer depth increases. Right: We show examples of activation
maximization with respect to a CNN’s output class prediction. Images reproduced with
permission of Mahendran et al., 2016b.

Specifically, Simonyan et al., 2014 learn an input image x∗ that maximizes the
output class score and had a small L2 norm according to the following equation:

x∗ = arg max
x

Φc(x)− λ‖x‖2
2. (2.9)
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The L2 term acts as a regularizer34 to prevent the input image from having large
values and thus looking unnatural.

Beyond visualizing output class neurons, activation maximization can be applied
to any intermediate filter or filter activation, by generalizing eq. (2.9). Given a filter
direction v, the image that maximally activates that direction is given by

x∗ = arg max
x
〈v,Φl(x)〉 − λR(x), (2.10)

where R(·) regularizes the generated image.
Mahendran et al., 2015 introduce the second kind of feature visualization:

feature inversion (a.k.a. representation inversion or representation recon-
struction). This technique generates an input image that matches an intermediate
activation tensor of a reference image. Intuitively, a feature inversion shows a
user how a CNN “sees” an image at a particular layer. Figure 2.13 shows feature
inversions for an image at every layer in a CNN; these examples suggest that deep
layers in a CNN do not remember the textural details of the input image; instead,
they appear to remember semantic concepts (i.e. eyes, fur).

Figure 2.13: Feature inversion (Mahendran et al., 2016b). We show feature
inversions of an image of a monkey at every layer of a CNN; notice how the visualizations
become more abstract as layer depth increases. Images reproduced with permission
of Mahendran et al., 2016b.

Formally, a feature inversion is learned by minimizing the following:

x∗ = arg min
x
L(Φl(x),Φl(x0)) + λR(x), (2.11)

where the first term is a loss term that compares the internal representation at some
intermediate layer l of a reference image x0 and the generated image x∗ while the
second term is a regularizer that encourages x to naturalistic. Mahendran et al.,
2015 notably introduces a total variation regularization term, which encourages

34Here, a regularizer is an additional penalty term that encourages a certain property on a
quantity (i.e. x should not have extreme values); this is also known as encoding a prior .
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neighboring pixels in the learned image to be similar, thereby encouraging the
learned image to be smooth.35

Mordvintsev et al., 2015 introduced a third kind of visualization known as
caricatures (a.k.a. deep dream), which aims to exaggerate the features captured
by a given network layer that exist in a reference image. Intuitively, these
visualizations are somewhat analagous to caricatures created by artists, which
exaggerate existing features in a subject. Figure 2.14 shows an example of a
caricature visualization.

Figure 2.14: Caricature (Mordvintsev et al., 2015). We show a caricature (top
right) of an image containing clouds (top left: original image). We zoom in and highlight
a few interesting visualizations that pop up (bottom row). Much like caricatures drawn by
visual artists, these feature caricatures (a.k.a. “deep dream”) accentuate and exaggerate
patterns found in the original image. Images reproduced from Mordvintsev et al., 2015
under CC BY 4.0.

Caricatures are learned in the same way as activation maximization visualizations
with two key differences. First, instead of initializing the image being generated to
one filled with random noise (as is typically done in activation maximization and
feature inversion), the image being learned is initialized to the reference image itself.
Second, instead of maximizing along specific filter direction v, caricatures instead
maximize activations in the direction of the reference image’s CNN representation,

35Mahendran et al., 2015 uses a normalized Euclidean distance (i.e. L(Φl(x),Φl(x0)) =
‖Φl(x)−Φl(x0)‖2
‖Φl(x0)‖2

) as the loss term as well as an α-norm (i.e. Rα(x;α) = ‖x‖αα) and total variational
(TV) norm (i.e. RTV (x;β) =

∑
i,j((xi,j+1 − xi,j)2 + (xi+1,j − xi,j)2)

β
2 ), as regularizers, which

encourage the learned image to have non-extreme and smooth values respectively.

https://creativecommons.org/licenses/by/4.0/
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Φl(x0). The resulting maximization is as follows:

x∗ = arg max
x
〈Φl(x0),Φl(x)〉 − λR(x). (2.12)

Together, these two key differences ensure that the resulting visualization appears
very similar to the reference image (i.e. an exaggerated version of it).

While these feature visualizations are interesting (see figs. 2.12 to 2.14), they
are often not visually realistic (i.e. they don’t look like real images). Thus, since Si-
monyan et al., 2014; Mahendran et al., 2015; Mordvintsev et al., 2015, a number of
subsequent works sought to improve the visual quality of these feature visualizations.
They tend to fall into one of a few categories:36 1. frequency penalization; 2.
transformation robustness; 3. strong natural image priors; and 4. diversity.

First, frequency penalization refers to mitigating the high-frequency artifacts that
are typically present in feature visualizations (i.e. the highly pixelated, unnatural
patterns). This can be done using regularization functions, like total variational
norm (Mahendran et al., 2015; Nguyen et al., 2015; Øygard, 2015; Tyka, 2016;
Mordvintsev, 2016; Olah et al., 2017).

Second, transformation robustness refers to learning an input image that gen-
erally characterizes the preferred stimuli of a filter, even if subject to geometric
transformations (such as changes in color, scale, and jitter) (Mordvintsev et al., 2015;
Olah et al., 2017). Then, the feature visualization can be seen as a representative
exemplar of the kinds of input images a filter is selective for (i.e. it is selective
for images that generally look like this, regardless of geometric transformations).
This is typically encouraged by randomly transforming the generated image at
every step of the optimization.

Third, strong priors refers to learning and utilizing a strong natural image prior
(e.g. via a generator network) to encourage learned images to be naturalistic (Nguyen
et al., 2016a; Nguyen et al., 2017; Ulyanov et al., 2018; Mordvintsev et al., 2018).

Lastly, diversity refers to generating a diverse set of feature visualizations, e.g. for
activation maximization, in order to better characterize the diversity of stimuli
that a filter is selective for (D. Wei et al., n.d.; Nguyen et al., 2016b; Nguyen
et al., 2017; Olah et al., 2017). This is typically done by adding a diversity term
to the optimization procedure.

36Olah et al., 2017 first used the first three groupings.
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Optimization via generator networks. In the rest of this section, we focus
primarily on research developments that use of generator networks as strong natural
image priors in order to learn more naturalistic images.37

Instead of directly learning an image that reconstructs CNN features (as done
in Mahendran et al., 2015), Dosovitskiy et al., 2016a trains a generator network to
do feature reconstruction. Given a real image x0 and a CNN Φ being explained,
the generator network takes as input the activation tensor of the image at a
specific layer (i.e. Φl(x0)) and outputs a generated image that is encouraged to
be similar to the real one.38,39

Building on Simonyan et al., 2014 and Dosovitskiy et al., 2016a, Nguyen et al.,
2016a improves upon activation maximization by using the generator network
from Dosovitskiy et al., 2016a to generate an image that maximally activates an
output class unit. In contrast to Simonyan et al., 2014, which directly learned an
input image to maximally activate an output class unit, Nguyen et al., 2016a’s Deep
Generator Network-based Activation Maximization (DGN-AM) instead learns an
input code to the generator network that produces an image that then maximally
activates an output class (see fig. 2.15):40

z∗ = arg max
z

(Φc(G(z))− λ‖z‖2
2). (2.13)

Because a pre-trained generator network is used, the produced images are more
realistic compared to those that are directly learned (compare fig. 2.12 with fig. 2.16).

Similar to Nguyen et al., 2015, Ulyanov et al., 2018’s Deep Image Prior
(DIP) uses a generator network to generate an image that maximizes a class
activation (i.e. activation maximization). It also demonstrates how to use a generator
network to produce an image that inverts a reference’s image’s feature representation
(i.e. feature inversion). However, instead of optimizing the input code to the
generator, Ulyanov et al., 2018 optimize the parameters of an untrained generator.

37See Olah et al., 2017 for a more thorough treatment of the other research advancements.
38Specifically, the generated image is encouraged to be similar to the input image in image

space, feature space, and adversarially. Image space similarity means that pixels between the
generated and reference image should be similar (e.g. via a L2 loss term). Feature space similarity
means that intermediate activation tensors yielded by the two images should be similar (e.g. via a
loss like that of the first term in eq. (2.11)). Adversarial similarity means that the distribution
of generated images and that of real images should be indistinguishable (e.g. via an adversarial
loss (I. Goodfellow et al., 2014)).

39Dosovitskiy et al., 2016a builds off Dosovitskiy et al., 2016b, which learns a generator that
generates images from activation tensors to be similar in image space only, by adding a feature
space (a.k.a. perceptual) loss and an adversarial loss.

40Nguyen et al., 2017 improves upon Nguyen et al., 2016a by using autoencoders as the generator
class and generating images conditional on a class (as opposed to maximizing the class probability).
In practice, this yields much more diverse images.
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Figure 2.15: DGN-AM (Nguyen et al., 2016a). Instead of directly optimizing an
image, as done in Zeiler et al., 2014, DGN-AM optimizes an input code that is used to
generate an image such that the generated image maximally activates a CNN feature
(e.g. the “candle” output class). The pre-trained generator network acts as a strong
natural image prior, since it was trained to generate realistic images (see fig. 2.16 for
generated examples). Images reproduced with permission of Nguyen et al., 2016a.

Figure 2.16: Activation maximization using strong natural image
prior (Nguyen et al., 2016a). DGN-AM (Nguyen et al., 2016a) generates images that
maximally activate specific CNN filters. Here, we show examples that highly activate
conv5 filters (top) and scene output neurons (bottom). Their realistic appearance (as
compared to examples that were directly optimized in fig. 2.12) is due to the use of a pre-
trained generator network that acts as a strong natural image prior. Images reproduced
with permission of Nguyen et al., 2016a.

For activation maximization, the following optimization is performed:

θ∗ = arg max
θ

Φc(G(z; θ)), (2.14)

where θ∗ denotes generator G’s parameters and z is fixed as a randomly initialized
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vector.41 For feature inversion, the optimization is updated as follows:

θ∗ = arg min
θ
L(Φl(G(z; θ)),Φl(x0)) (2.15)

where L is an L2 reconstruction error.
Using the same formulation in which the parameters of an untrained generator

are learned, Mordvintsev et al., 2018 apply DIP to Compositional Pattern Producing
Networks (CPPNs) (Stanley, 2007) to generate arbitrarily large images for activation
maximization.42

Using a similar paradigm to Network Dissection (Bau et al., 2017), GAN
Dissection (Bau et al., 2019b) identifies hidden units in the generator netwok
of a GAN that are highly correlated with semantic concepts (e.g. trees, domes)
and increases or decreases their activations at specific spatial locations in order to
control the appearance of the generated image (e.g. to delete trees or add domes).

2.3.2 Concept encoding

A number of works sought to understand how semantic concepts are encoded
internally in a CNN representation. Within neuroscience, the “grandmother
cell” (Konorski, 1967; Gross, 2002) theory suggests that there are neurons fire when
a specific, highly semantic visual concept is seen (i.e. the face of one’s grandma or
a specific person, like Jennifer Aniston). This theory represents the extreme end
of the idea of sparse representations; the opposing view is that a specific concept
is encoded by a distributed pattern across a large population of neurons.

In part because of the long line of activation maximization work, which typically
visualizes what a single filter is selective for, several works argue that semantic
concepts are encoded in a sparse manner by individual hidden units. Zhou et al.,
2015; Zhou et al., 2018a leverage their visualizations which overlay segmentation
masks over highly activated patches to support this argument.

Zhou et al., 2015 show annotators a set of images with their segmentation
overlays highlighting where they are highly activated for a given filter in order to
name and categorize the semantic concept that filter is selective for as well as to
quantify how selective it is for that concept, by prompting annotators to mark
images that don’t fit. From this annotation experiment, they show that around 60%
of units in each layer yielded high precision (> 75%); they also show that filters

41That is, z
i.i.d.∼ N (0, 1).

42Unlike most generator networks, which typically produce a fixed size output, CPPNs can
generate arbitrarily large images. It does this by taking as input an (x, y) coordinate and outputting
the (r, g, b) pixel value for that coordinate.
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from early layers were annotated to encode simpler concepts (i.e. colors) while later
layers tended to encode more complex concepts (i.e. objects and scenes).

Using a dataset annotated with semantic concepts, Zhou et al., 2018a evaluate
segmentation performance when segmenting concepts with thresholded, extremal
filter activations in order to answer the question: “which filters are highly correlated
with what concepts?” They found a significant portion of filters to be selective for
unique concepts. Furthermore, they also show that, when activations are rotated
randomly (i.e. by a random change-of basis), a number of rotated filters that are
concept detectors significantly decreases; based on this experiment, they argue that
trained CNNs learn filters that are highly semantic.

In contrast, Szegedy et al., 2014 visualize patches that are most aligned to a
random direction in activation space and show qualitatively that random directions
also corresponded with semantic concepts.

Agrawal et al., 2014 considered both encoding perspectives: First, they plot
precision-recall curves43 of individual filters when using their activations for an
object detection task on the relatively small PASCAL dataset (Everingham et al.,
2015); they found only a few “grandmother cell”-like units for which precision did
not immediately drop as recall increased (see fig. 2.17a).44 Second, they also trained
a linear support vector machine (SVM)45 on subsets of filters, from using a single
filter to all filters and by ordering filters based on a heuristic of how important that
filter is for detecting a given object.46 Then, they plot object detection performance
against the number of filters used and found that, for most classes, a substantial
number of filters are needed to acheive near peak performance (see fig. 2.17b).47

Similar to Zhou et al., 2015, Gonzalez-Garcia et al., 2016 run a human annotation
experiment to identify if extremal filter activations systematically correspond to a
semantic object part (e.g. a wheel in a car). However, unlike Zhou et al., 2015, which

43Precision is the fraction of true positives out of all predicted positives (i.e. true positives
+ false positives), while recall is the fraction of true positives out of all real positives (i.e. true
positives + false negatives). Precision-recall curves plot precision against recall when thresholding
predictions at different values (i.e. varying the threshold defining positive vs. negative). See the
Wikipedia article for “Precision and recall” and scikit-learn documentation for “Precision-Recall.”

44These “grandmother cell”-like filters existed for PASCAL classes like bicycle, person, car, and
cat.

45A support vector machine (SVM) is a kind of supervised machine learning algorithm. See the
Wikipedia article for “Support vector machine.”

46Alain et al., 2016 leverage a similar strategy of training linear classifiers on filter activations;
however, Alain et al., 2016 focus on understanding how layer depth affected downstream task
performance.

47However, Agrawal et al., 2014 also noted that for a few classes, such as person and bicycle, it
appeared that only a few select filters were necessary to performance comparable to that acheived
when using all filters.

https://en.wikipedia.org/wiki/Precision_and_recall
https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
https://en.wikipedia.org/wiki/Support_vector_machine
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Figure 2.17: Quantifying the number of filters needed to encode a con-
cept (Agrawal et al., 2014). (a) We show precision-recall curves that reflect
performance when using individual filters to perform object detection for a specific
concept (each line represents a filter). Because most curves drop immediately (with the
exception of the “person” curve), this suggests that single filters typically are insufficient
for detecting a concept consistently. (b) Here, object detection performance is plotted
against the number of filters used to perform the task. How quickly the curves saturate
(i.e. plateau) indicate how few filters are needed to encode a given concept. Image
reproduced with permission from Agrawal et al., 2014.

found that 60% of filters correlated with specific concepts, Gonzalez-Garcia et al.,
2016 found that 75% of filters did not systematically correlate with a semantic
part. These differences may be attributed to the different methodologies used
and/or different underlying datasets used to train the networks being evaluated.48

By comparing clusters that grouped filter activations together with individual
filters, J. Wang et al., 2015 show that their clusters acted as superior parts detectors
when evaluated on detection tasks, thereby suggesting that semantic parts are
better represented by populations of units rather than individual units.

Morcos et al., 2018 and Zhou et al., 2018c present opposing perspectives on
the importance of class-selective hidden units. Morcos et al., 2018 argue that
the more distributed a neural network representation is, the better it appears to
generalize beyond the training distribution. They point out that techniques like
dropout (Srivastava et al., 2014) and batch normalization (Ioffe et al., 2015),49

which are known to improve model robustness, encourage relatively more distributed
encodings. They also perform an ablation study in which they correlate the class
selectivity of individual units with the impact they have on task performance when

48Gonzalez-Garcia et al., 2016 use the relatively smaller PASCAL-Part dataset (X. Chen et al.,
2014), while Zhou et al., 2015 use the larger ImageNet (Russakovsky et al., 2015) and Places (Zhou
et al., 2016b) datasets.

49Network dissection (Bau et al., 2017) highlight the effect dropout and batch normalization had
on the distributed-ness of encodings. Bau et al., 2017’s results affirm the batchnorm experiment
of Morcos et al., 2018 yet disagree with the corresponding dropout experiment.
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ablated. This experiment revealed a neutral or negative correlation between class
selective and ablated performance, leading the authors to conclude that a unit’s
class selectivity is a poor predictor of its relevance to the downstream task.

In response, Zhou et al., 2018c highlight that, while class-selectivity of individiual
units is a poor predictor of overall task performance, it is a strong predictor of
class-specific performance. They redid the original ablation experiments as well
as ran modified versions in which they found that ablating units that are highly
selective for a given class negatively impacts the class-specific accuracy for that class.

2.3.3 Sensitivity to geometric transformations

Lastly, a number of works focus on characterizing properties of internal components
of a model. In this section, we highlight those that focus on understanding a CNN
representation’s sensitivity to various geometric transformations (e.g. translation,
scale, rotation) and how that changes based on the location of a representa-
tion in a network.

Zeiler et al., 2014 plots the change in probability of the predicted output class
as an single image was systematically transformed.50 Their qualitative results
suggest that features of late CNN layers are relatively more invariant to geometric
transformation than those of early layers.

Lenc et al., 2015 introduce a quantitative way to evaluate the equivariance,
invariance, as well as equivalence of different representations.51 They do this by
systematically transforming the input, learning an additional “transformation” layer
that “undoes” the input transformation at a given network depth, and quantifying
changes to classification performance when a transformation layer is used.52 One
of their findings was that AlexNet (Krizhevsky et al., 2012) is largely invariant to
horizontal flips and rescaling but is sensitive to vertical flips and 90-degree rotations.
This makes sense because horizontal flipping and random crops, which typically
include rescaling the image, are standard pre-processing steps when training a CNN.
Furthermore, a lot of real-world objects have horizontal symmetry (e.g. an apple, a
mug, etc.). Lenc et al., 2015 suggest that a CNN representation’s sensitivity to

50They also do this another variant in which they plot the change in Euclidean distance of
intermediate activations.

51Equivariance refers to how a representation changes as an input is transformed. Invariance
refers to the lack of change (i.e. insensitivity) in a representation as an input is transformed.
Equivalence refers to whether two different representations encode the same information (i.e. are
functionally equivalent). These definitions are given by Lenc et al., 2015.

52Lenc et al., 2015 chose a linear layer to be the transformation layer.
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different kinds of transformations is a reflection of whether those transformations
are seen in training data (i.e. either naturally or due to pre-processing steps).

2.4 Interactive visualizations and visual inter-
faces

An interactive visualization is a visualization technique that leverages human
interaction as an essential component of a visualization. Relatedly, an interactive
visual interface is an interface that leverages human interaction to explore, navigate,
and/or interact with multiple visualizations. The multidisciplinary field of visual
analytics (Thomas et al., 2005) focuses on studying the use of such interfaces to
facilitate analytical reasoning.53

While there is vast literature on visual analytics, in this section we primarily
focus on works that develop interactive visualizations and visual interfaces for
the purpose of understanding CNNs.54

Most research in this vein can be categorized along a few dimensions: First, what
kind of access to the CNN does the visualization have? That is, does it visualize
the internal components of a model (i.e. “white-box”) or focus on the relationship
between inputs and outputs of a model (i.e. “black-box”). Second, at what level
does it visualize? That is, does it visualize a particular instance (i.e. a single input
to the model) or does it aim to characterize a global55 component or view of a
model (e.g. a hidden unit in the model, how a model performs on various subsets of
data). Third, how “reusable” is this interactive visualization or interface? That is,
does it only work for a particular model architecture or dataset (e.g. pedagogical
tools that illustrate how a particular CNN functions) or can it be easily applied
to a number of models trained on a variety of datasets? We primarily organize
the rest of the section along the first and third dimensions (e.g. “white-box” vs.
“black-box” and “reusability”). Figure 2.18 summarizes the works discussed in this
section and categorizes them based on these dimensions.

53See the Wikipedia article on “Visual analytics.”
54For a comprehensive survey on visual analytics for deep learning, refer to Hohman et al., 2018.
55A global explanation refers to an explanation of a model’s behavior that is input independent

(i.e. characterizes a model component and how it broadly behaves, not how it specifically behaves
for a given input).

https://en.wikipedia.org/wiki/Visual_analytics
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Abadi et al., 2016 
(TensorBoard) X X X X X X X X X X X X

Bau et al., 2019 
(GANPaint) X X X X X

Carter et al, 2016 X X X X X
Carter et al., 2019 
(Activation Atlas) X X X* X X X X

Fong et al., in prep 
(Similarity Overlays) X X X X X X

Google PAIR, 2017 
(Facets) X X X X X X

Harley, 2015 X X X X X X
Hohman et al., 2019 

(GAMut) X X X X X X

Hohman, 2017 
(ShapeShop) X X X X X X

Kahng et al., 2018 
(GANLab) X X X X X

Madsen, 2019 (Memory 
in RNNs) X X X X

Norton & Qi, 2017 
(Adversarial Playground) X X X X X

Olah et al., 2018 
(Building Blocks) X X X* X X X X

Olah, 2014 X X X X X X
Smilkov et al., 2017 

(TensorFlow 
Playground)

X X X X X

Strobelt et al., 2017 
(LSTMVis) X X X X X

Strobelt et al., 2018 
(Seq2SeqVis) X X X X X X

Talbot et al., 2009 
(EnsembleMatrix) X X X X X

Torralba, 2017 
(DrawNet) X X X X X X

Wattenberg et al., 2016 X X X X
Webster, 2017 

(Teachable Machines) X X X X X X

Wexler et al., 2019 
(What-If) X X X X X X X

Yosinski et al., 2015 
(DeepVis) X X X* X X X X

Zhou et al., 2018 
(iForest) X X X X X X

Zhu et al., 2016 X X X X X

Figure 2.18: Summary of literature on interactive visualizations and visual
interfaces. In this table, we summarize the works reviewed in this section and categorize
them along a few dimensions, which are described at the beginning of section 2.4. *
denotes that significant set-up and pre-computing is required to visualize a new model.

2.4.1 “White-box” visualizations

“White-box” tools aim to visualize an internal aspect of the model (e.g. filter
activations, model parameters, model layers).
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2.4.1.1 Non-reusable visualizations

Most such works are of a pedagogical nature: They enable deep exploration of
a restricted set of models and/or datasets in order to gain intuition as to how
a model works.

Visualizations of toy datasets. Several works focus on visualizing neural
networks trained on toy datasets (e.g. classifying 2-dimensional (x, y) points into
two classes). TensorFlow Playground56 (Smilkov et al., 2017a) is an interactive
visual interface that allows a user to control a wide range of aspects of training a
fully-connected neural network57 for classification or regression (e.g. the training
datset, input features, number of hidden units and layers, and other hyperparameters
) and visualizes the impact of these variables across training time (see fig. 2.19).

Figure 2.19: TensorFlow Playground (Smilkov et al., 2017a) In this visual
interface, a user can control and inspect the training of a simple neural network – i.e. by
selecting the training data (1st column), input features (2nd col), number of layers
and neurons in each layer (3rd col), and other training hyperparameters (top). Images
reproduced with permission of Smilkov et al., 2017a.

GANLab58 (Kahng et al., 2018) is a similar tool that visualizes the impact of
56https://playground.tensorflow.org
57A fully-connected neural network does not contain convolutional layers that apply the same

weights to many spatial neighborhoods but rather only consists of fully-connected, linear layers
that apply a unique weight to every feature.

58https://poloclub.github.io/ganlab

https://playground.tensorflow.org
https://poloclub.github.io/ganlab


44 2.4. Interactive visualizations and visual interfaces

design choices for generative adversarial networks (GANs).59 Wattenberg et al.,
2016 present a similar interactive tool for understanding how the parameters for
t-SNE plots (Maaten et al., 2008), which are frequently used to visualize high-
dimensional data, affect their visualizations.

Visualizations of simple datasets. Other works visualize CNNs on simple
image datasets, like the MNIST dataset (LeCun et al., 2010).60 Inspired by
TensorFlow Playground (Smilkov et al., 2017a), Adversarial Playground (Norton
et al., 2017) allows the user to control the parameters of various techniques for
generating adversarial examples61 of MNIST images and visualizes the impact
of those choices. Similarly, ShapeShop (Hohman et al., 2017) allows a user to
design a training dataset from a set of basic shapes as well as a fully-connected
or convolutional neural network model from a set of pre-defined options. It then
visualizes a few predictions for the specified training set and model. It also allows
a user to compare results between different experimental settings.

Harley, 2015 presents several instance-oriented interactive visualizations that
allow a user to draw their own MNIST-like digit and interactively explore the
intermediate activations and internal operations of a CNN network. Olah, 2014
presents a series of interactive visualizations that visualize the effects of applying
several dimensionality reduction62 techniques to MNIST examples.

Visualizations on complex datasets. Lastly, a number of works focus on
visualizing the internal dynamics of popular, modern neural network models trained
on more real-world examples (e.g. natural images, real-world corpus of text, diverse
hand-writing samples). Although these provide deep insight into the models they
visualize, they cannot be easily applied to novel models or datasets.

59Generative adversarial networks (GANs) are a machine learning paradigm in which two
networks compete adversarially against one another. The discriminator network is optimized to
distinguish real examples from fake, generated ones, while the generator network is optimized to
fool the discriminator network such that it can’t distinguish between real and fake examples. This
paradigm encourages the generator network to produce realistic-looking generated examples. See
the Wikipedia article for “Generative adversarial network” or I. Goodfellow et al., 2014 for more
details.

60MNIST is a dataset that contains 28× 28 black-and-white images of individual hand-written
digits and is frequently used in a digits classification task.

61Adversarial examples (Szegedy et al., 2014) are maliciously generated images that contain
nearly imperceptible modifications to real images yet are typically misclassified on models trained
only on real examples.

62Dimensionality reduction refers to techniques that reduce the number of variables (i.e. dimen-
sions) of high-dimensional data (e.g. transforming 28 × 28 MNIST examples to 2D points) by
identifying the most important factors of variation. See the Wikipedia article on “Dimensionality
reduction.”

https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Dimensionality_reduction
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An interactive companion visualization for Cichy et al., 2016, DrawNet (Tor-
ralba, 2017) visualizes an AlexNet CNN (Krizhevsky et al., 2012) trained on
ImageNet (Russakovsky et al., 2015), a large-scale object dataset. DrawNet allows a
user to select a neuron in any of the 5 layers and visualizes the strongest connections
going in and out of that neuron. Additionally, for several neurons with strong
connections to the selected neuron, it shows 4 images, each with an receptive field
overlay (Zhou et al., 2015) that most strongly activate the given neuron.

Several similar visualizations have been made for recurrent neural networks
(RNNs)63 trained on text and handwriting samples. LSTMVis (Strobelt et al.,
2017) visualizes an LSTM 64 network and allows the user to explore hypotheses
about the dynamics of its internal state and observe the effects on internal hidden
units. It visualizes a number of LSTM models trained on real-world tasks and
datasets (e.g. language models for text, music, and code; German-English translation;
sentence summarization, etc.). Similarly, Seq2Seq-Vis (Strobelt et al., 2018) allows
a user to explore a sequence-to-sequence65 model at specific points (i.e. input or
output to a network). Lastly, Carter et al., 2016 visualize a hand-writing prediction
RNN and allows a user to dynamically input their own handwriting samples and
simulataneously explore the internal activations of the model on their samples.

2.4.1.2 Reusable visualizations

In contrast to the previous works, a few works develop interactive visualizations and
visual interfaces to be reusable, that is, to be used in the research and development
process for a variety of novel models and datasets.

TensorFlow’s (Abadi et al., 2016) TensorBoard provides a flexible, visual
interface helps users monitor the training process and the model being trained by
visualizing basic information as training progresses (e.g. plotting metrics, visualizing
model graph (Wongsuphasawat et al., 2017), viewing distribution histograms of
weights). Thanks to its API, it can be used easily to visualize custom objects
(e.g. anything that takes the form of an image).

63Recurrent neural networks (RNNs) are another class of neural networks typically used for
temporal data, such as text, as they are successively applied to temporal units in a sequence
(e.g. characters in a sentence) and maintain an internal state (i.e. memory) to “remember” earlier
units seen. See the Wikipedia article on “Recurrent neural network.”

64An LSTM (long short-term memory) is a particular class of RNNs that can reason about
longterm relationships in a temporal input sequence. See Olah, 2015’s blog post on “Understanding
LSTMs.”

65A sequence-to-sequence model takes as input a sequence and also outputs a sequence
(e.g. German-English translation, part-of-speech labelling, etc.).

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://colah.github.io/posts/2015-08-Understanding-LSTMs
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The Deep Visualization Toolbox (DeepVis) (Yosinski et al., 2015) is
explicitly oriented towards interpretability and allows a user to explore the internal
representation of a Caffe (Jia et al., 2014) model. By combining several visualization
techniques (i.e. activation maximization (Simonyan et al., 2014), DeConvNet (Zeiler
et al., 2014), and top activated patches), the toolbox allows a user to present
their own input image (i.e. via webcam), see the spatial activation patterns for
all channels any layer, and zoom into a particular filter to see visualizations of
what most activates it (see fig. 2.20).

Figure 2.20: DeepVis (Yosinski et al., 2015). In this visual interface, a user can
interactively explore the CNN representation of an image (i.e. school bus image) via
a number of visualizations – i.e. individual filter activations (center and middle left),
activation maximization (top right), top activated patches (middle right), and DeConvNet
(bottom left and right). Users can select a layer (top center) and specific filter (green box)
to focus on; they can also provide their own input via a webcam (not shown). Image
reproduced with permission of Yosinski et al., 2015.

Leveraging the Lucid66 interpretability library for TensorFlow models, Build-
ing Blocks (Olah et al., 2018) highlights how several visualization techniques
(e.g. semantic dictionaries, activation grids, spatial and channel attribution, channel,
and matrix factorization of activations) can be used together as building blocks to
create novel visualizations that increase a user’s understanding of a model. It uses

66https://github.com/tensorflow/lucid

https://github.com/tensorflow/lucid
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interactivity to select a spatial region (i.e. an activation patch), convolutional filter,
or factorized group for which to provide more specific visualizations.

In a similar vein, Activation Atlas (Carter et al., 2019) synthesizes two
techniques: 1. feature visualizations (Olah et al., 2017) (see section 2.3.1.2); and 2.
t-SNE plots (Maaten et al., 2008). By combining these visualizations, activation
atlases visualize a wide range of CNN activations and how they relate to each other.
A feature visualization typically visualizes a single direction in activation space,
while t-SNE provides a global perspective of how data points relate to one another.
Thus, by effectively showing a t-SNE of many feature visualizations and allowing
the user to zoom in and out of the plot, activation atlases combine the depth of
feature visualizations with the breadth of t-SNE plots.

Due to their reliance on optimized feature visualizations, Yosinski et al., 2015;
Olah et al., 2018; Carter et al., 2019 require pre-computing feature visualizations
for a novel model before being able to visualize it. The Lucid library also requires
models to be imported as Lucid model objects. Thus, non-negligible set-up work
is needed to use these tools for novel models.

2.4.2 “Black-box” visualizations

As mentioned earlier, “black-box” visualizations explain a model’s behavior by rea-
soning about its inputs and outputs (i.e. without access to a model’s inner workings).

2.4.2.1 Non-reuseable visualizations

Madsen, 2019 presents two interactive visualizations to demonstrate how memory
works in RNNs: 1. a connectivity visualization allows the user to hover over
characters in an input sentence and visually attributes previous characters that
most influence the prediction for the selected character; and 2. an autocomplete
visualization that allows a user to type in a free-form input and shows in real-time
the top three predicted choices for the next word. Madsen, 2019 also combines these
two visualizations by showing the three most probable words in the connectivity
visualization as well as synchronized visualizations of the same input sequence being
processed by different RNNs to enable model comparison.

2.4.2.2 Reuseable visualizations

Several works introduce easy-to-use interfaces that require minimal coding.
Facets (PAIR, 2017) provides an interactive visual interface for a user to

easily explore their data by summarizing input features and their distributions
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(i.e. Facets Overview) and by organizing many data points for interactive exploration
(i.e. Facets Dive). Building off Facets, the What-If tool (Wexler et al., 2019) allows
a user to inspect machine learning models. It provides support for comparing
the performance of multiple models, visualizing model results, showing feature
attributions for individual predictions, editing a data point, and more. Lastly,
Teachable Machines (Webster, 2017) provides an easy-to-use interface that allows
lay users to train their own ML models and evaluate them on user-provided inputs
(e.g. interactively via a webcam).

2.4.3 Visualizations for other models

Although we primarily focus on interactive visualizations for discriminative67 neural
network models, we highlight a few notable works for other kinds of models here.

Generative adversarial networks (GANs). Zhu et al., 2016 present a human-
computer interactive collaboration tool that empowers a user to transform colored
scribbles into naturalistic images with the assistance of a GAN. Similarly, GAN-
Paint (Bau et al., 2019a) allows a user to augment a natural image and add specific
concepts (e.g. trees, bricks) with paint-like strokes.

Non-CNN models. Other visual analytic interfaces have been developed for
other kinds of models, such as general additive models (i.e. GAMut (Hohman
et al., 2019), random forest models (i.e. iForest (Zhao et al., 2018)) and ensembles
of models (i.e. EnsembleMatrix (Talbot et al., 2009)).

67e.g. models trained for a predictive task.
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Interpretable Explanations of Black Boxes

by Meaningful Perturbation

The following paper was presented at the IEEE International Conference of Com-
puter Vision (ICCV) at Venice, Italy in 2017 (Fong et al., 2017).1,2

1Supplementary materials can be found here: http://openaccess.thecvf.com/
content_ICCV_2017/supplemental/Fong_Interpretable_Explanations_of_ICCV_2017_
supplemental.pdf

2We expanded on the contents of this paper in a book chapter (Fong et al., 2019b).
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Abstract

As machine learning algorithms are increasingly applied
to high impact yet high risk tasks, such as medical diag-
nosis or autonomous driving, it is critical that researchers
can explain how such algorithms arrived at their predic-
tions. In recent years, a number of image saliency methods
have been developed to summarize where highly complex
neural networks “look” in an image for evidence for their
predictions. However, these techniques are limited by their
heuristic nature and architectural constraints.

In this paper, we make two main contributions: First, we
propose a general framework for learning different kinds
of explanations for any black box algorithm. Second, we
specialise the framework to find the part of an image most
responsible for a classifier decision. Unlike previous works,
our method is model-agnostic and testable because it is
grounded in explicit and interpretable image perturbations.

1. Introduction
Given the powerful but often opaque nature of mod-

ern black box predictors such as deep neural networks [4,
5], there is a considerable interest in explaining and un-
derstanding predictors a-posteriori, after they have been
learned. This remains largely an open problem. One
reason is that we lack a formal understanding of what it
means to explain a classifier. Most of the existing ap-
proaches [19, 16, 8, 7, 9, 19], etc., often produce intuitive
visualizations; however, since such visualizations are pri-
marily heuristic, their meaning remains unclear.

In this paper, we revisit the concept of “explanation” at
a formal level, with the goal of developing principles and
methods to explain any black box function f , e.g. a neural
network object classifier. Since such a function is learned
automatically from data, we would like to understand what
f has learned to do and how it does it. Answering the
“what” question means determining the properties of the
map. The “how” question investigates the internal mech-
anisms that allow the map to achieve these properties. We
focus mainly on the “what” question and argue that it can

flute: 0.9973 flute: 0.0007 Learned Mask

Figure 1. An example of a mask learned (right) by blurring an
image (middle) to suppress the softmax probability of its target
class (left: original image; softmax scores above images).

be answered by providing interpretable rules that describe
the input-output relationship captured by f . For example,
one rule could be that f is rotation invariant, in the sense
that “f(x) = f(x′) whenever images x and x′ are related
by a rotation”.

In this paper, we make several contributions. First, we
propose the general framework of explanations as meta-
predictors (sec. 2), extending [18]’s work. Second, we iden-
tify several pitfalls in designing automatic explanation sys-
tems. We show in particular that neural network artifacts
are a major attractor for explanations. While artifacts are
informative since they explain part of the network behav-
ior, characterizing other properties of the network requires
careful calibration of the generality and interpretability of
explanations. Third, we reinterpret network saliency in our
framework. We show that this provides a natural general-
ization of the gradient-based saliency technique of [15] by
integrating information over several rounds of backpropa-
gation in order to learn an explanation. We also compare
this technique to other methods [15, 16, 20, 14, 19] in terms
of their meaning and obtained results.

2. Related work

Our work builds on [15]’s gradient-based method, which
backpropagates the gradient for a class label to the im-
age layer. Other backpropagation methods include DeCon-
vNet [19] and Guided Backprop [16, 8], which builds off
of DeConvNet [19] and [15]’s gradient method to produce
sharper visualizations.

Another set of techniques incorporate network activa-
tions into their visualizations: Class Activation Mapping

1



(CAM) [22] and its relaxed generalization Grad-CAM [14]
visualize the linear combination of a late layer’s activations
and class-specific weights (or gradients for [14]), while
Layer-Wise Relevance Propagation (LRP) [1] and Excita-
tion Backprop [20] backpropagate an class-specific error
signal though a network while multiplying it with each con-
volutional layer’s activations.

With the exception of [15]’s gradient method, the above
techniques introduce different backpropagation heuristics,
which results in aesthetically pleasing but heuristic notions
of image saliency. They also are not model-agnostic, with
most being limited to neural networks (all except [15, 1])
and many requiring architectural modifications [19, 16, 8,
22] and/or access to intermediate layers [22, 14, 1, 20].

A few techniques examine the relationship between in-
puts and outputs by editing an input image and observing
its effect on the output. These include greedily graying out
segments of an image until it is misclassified [21] and vi-
sualizing the classification score drop when an image is oc-
cluded at fixed regions [19]. However, these techniques are
limited by their approximate nature; we introduce a differ-
entiable method that allows for the effect of the joint inclu-
sion/exclusion of different image regions to be considered.

Our research also builds on the work of [18, 12, 2]. The
idea of explanations as predictors is inspired by the work
of [18], which we generalize to new types of explanations,
from classification to invariance.

The Local Intepretable Model-Agnostic Explanation
(LIME) framework [12] is relevant to our local explanation
paradigm and saliency method (sections 3.2, 4) in that both
use an function’s output with respect to inputs from a neigh-
borhood around an input x0 that are generated by perturb-
ing the image. However, their method takes much longer to
converge (N = 5000 vs. our 300 iterations) and produces a
coarse heatmap defined by fixed super-pixels.

Similar to how our paradigm aims to learn an image per-
turbation mask that minimizes a class score, feedback net-
works [2] learn gating masks after every ReLU in a net-
work to maximize a class score. However, our masks are
plainly interpretable as they directly edit the image while
[2]’s ReLU gates are not and can not be directly used as a
visual explanation; furthermore, their method requires ar-
chitectural modification and may yield different results for
different networks, while ours is model-agnostic.

3. Explaining black boxes with meta-learning
A black box is a map f : X → Y from an input

space X to an output space Y , typically obtained from an
opaque learning process. To make the discussion more con-
crete, consider as input color images x : Λ → R3 where
Λ = {1, . . . ,H} × {1, . . . ,W} is a discrete domain. The
output y ∈ Y can be a boolean {−1,+1} telling whether
the image contains an object of a certain type (e.g. a robin),

the probability of such an event, or some other interpreta-
tion of the image content.

3.1. Explanations as meta-predictors

An explanation is a rule that predicts the response of a
black box f to certain inputs. For example, we can ex-
plain a behavior of a robin classifier by the rule Q1(x; f) =
{x ∈ Xc ⇔ f(x) = +1}, where Xc ⊂ X is the sub-
set of all the robin images. Since f is imperfect, any such
rule applies only approximately. We can measure the faith-
fulness of the explanation as its expected prediction error:
L1 = E[1 − δQ1(x;f)], where δQ is the indicator function
of event Q. Note that Q1 implicitly requires a distribution
p(x) over possible images X . Note also that L1 is simply
the expected prediction error of the classifier. Unless we did
not know that f was trained as a robin classifier, Q1 is not
very insightful, but it is interpretable since Xc is.

Explanations can also make relative statements about
black box outcomes. For example, a black box f , could
be rotation invariant: Q2(x, x′; f) = {x ∼rot x

′ ⇒ f(x) =
f(x′)}, where x ∼rot x

′ means that x and x′ are related by
a rotation. Just like before, we can measure the faithfulness
of this explanation as L2 = E[1−δQ2(x,x′;f)|x ∼ x′].1 This
rule is interpretable because the relation ∼rot is.

Learning explanations. A significant advantage of for-
mulating explanations as meta predictors is that their faith-
fulness can be measured as prediction accuracy. Further-
more, machine learning algorithms can be used to discover
explanations automatically, by finding explanatory rules Q
that apply to a certain classifier f out of a large pool of pos-
sible rules Q.

In particular, finding the most accurate explanation Q is
similar to a traditional learning problem and can be formu-
lated computationally as a regularized empirical risk mini-
mization such as:

min
Q∈Q

λR(Q) +
1

n

n∑

i=1

L(Q(xi; f), xi, f), xi ∼ p(x). (1)

Here, the regularizer R(Q) has two goals: to allow the ex-
planation Q to generalize beyond the n samples x1, . . . , xn
considered in the optimization and to pick an explanationQ
which is simple and thus, hopefully, more interpretable.

Maximally informative explanations. Simplicity and in-
terpretability are often not sufficient to find good explana-
tions and must be paired with informativeness. Consider
the following variant of rule Q2: Q3(x, x′; f, θ) = {x ∼θ
x′ ⇒ f(x) = f(x′)}, where x ∼θ x′ means that x and x′

1For rotation invariance we condition on x ∼ x′ because the proba-
bility of independently sampling rotated x and x′ is zero, so that, without
conditioning, Q2 would be true with probability 1.
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Figure 2. Comparison with other saliency methods. From left to right: original image with ground truth bounding box, learned mask sub-
tracted from 1 (our method), gradient-based saliency [15], guided backprop [16, 8], contrastive excitation backprop [20], Grad-CAM [14],
and occlusion [19].



Stethoscope Gradient Soup Bowl Gradient

Figure 3. Gradient saliency maps of [15]. A red bounding box
highlight the object which is meant to be recognized in the image.
Note the strong response in apparently non-relevant image regions.

are related by a rotation of an angle ≤ θ. Explanations for
larger angles imply the ones for smaller ones, with θ = 0
being trivially satisfied. The regularizer R(Q3(·; θ)) = −θ
can then be used to select a maximal angle and thus find an
explanation that is as informative as possible.2

3.2. Local explanations

A local explanation is a ruleQ(x; f, x0) that predicts the
response of f in a neighborhood of a certain point x0. If f
is smooth at x0, it is natural to construct Q by using the
first-order Taylor expansion of f :

f(x) ≈ Q(x; f, x0) = f(x0) + 〈∇f(x0), x− x0〉. (2)

This formulation provides an interpretation of [15]’s
saliency maps, which visualize the gradient S1(x0) =
∇f(x0) as an indication of salient image regions. They
argue that large values of the gradient identify pixels that
strongly affect the network output. However, an issue is
that this interpretation breaks for a linear classifier: If
f(x) = 〈w, x〉+ b, S1(x0) = ∇f(x0) = w is independent
of the image x0 and hence cannot be interpreted as saliency.

The reason for this failure is that eq. (2) studies the vari-
ation of f for arbitrary displacements ∆x = x−x0 from x0

and, for a linear classifier, the change is the same regardless
of the starting point x0. For a non-linear black box f such
as a neural network, this problem is reduced but not elim-
inated, and can explain why the saliency map S1 is rather
diffuse, with strong responses even where no obvious infor-
mation can be found in the image (fig. 3).

We argue that the meaning of explanations depends in
large part on the meaning of varying the input x to the
black box. For example, explanations in sec. 3.1 are based
on letting x vary in image category or in rotation. For
saliency, one is interested in finding image regions that
impact f ’s output. Thus, it is natural to consider pertur-
bations x obtained by deleting subregions of x0. If we
model deletion by multiplying x0 point-wise by a mask m,

2Naively, strict invariance for any θ > 0 implies invariance to arbitrary
rotations as small rotations compose into larger ones. However, the for-
mulation can still be used to describe rotation insensitivity (when f varies
slowly with rotation), or ∼θ’s meaning can be changed to indicate rotation
w.r.t. a canonical “upright” direction for a certain object classes, etc.

blur constant noise

Figure 4. Perturbation types. Bottom: perturbation mask; top: ef-
fect of blur, constant, and noise perturbations.

this amounts to studying the function f(x0 � m)3. The
Taylor expansion of f at m = (1, 1, . . . , 1) is S2(x0) =
df(x0 �m)/dm|m=(1,...,1) = ∇f(x0) � x0. For a linear
classifier f , this results in the saliency S2(x0) = w � x0,
which is large for pixels for which x0 and w are large si-
multaneously. We refine this idea for non-linear classifiers
in the next section.

4. Saliency revisited
4.1. Meaningful image perturbations

In order to define an explanatory rule for a black box
f(x), one must start by specifying which variations of the
input x will be used to study f . The aim of saliency is
to identify which regions of an image x0 are used by the
black box to produce the output value f(x0). We can do
so by observing how the value of f(x) changes as x is
obtained “deleting” different regions R of x0. For exam-
ple, if f(x0) = +1 denotes a robin image, we expect that
f(x) = +1 as well unless the choice of R deletes the robin
from the image. Given that x is a perturbation of x0, this is
a local explanation (sec. 3.2) and we expect the explanation
to characterize the relationship between f and x0.

While conceptually simple, there are several problems
with this idea. The first one is to specify what it means
“delete” information. As discussed in detail in sec. 4.3, we
are generally interested in simulating naturalistic or plau-
sible imaging effect, leading to more meaningful perturba-
tions and hence explanations. Since we do not have access
to the image generation process, we consider three obvious
proxies: replacing the region R with a constant value, in-
jecting noise, and blurring the image (fig. 4).

Formally, let m : Λ→ [0, 1] be a mask, associating each
pixel u ∈ Λ with a scalar valuem(u). Then the perturbation
operator is defined as

[Φ(x0;m)](u) =





m(u)x0(u) + (1−m(u))µ0, constant,
m(u)x0(u) + (1−m(u))η(u), noise,∫
gσ0m(u)(v − u)x0(v) dv, blur,

where µ0 is an average color, η(u) are i.i.d. Gaussian noise
samples for each pixel and σ0 is the maximum isotropic

3� is the Hadamard or element-wise product of vectors.



standard deviation of the Gaussian blur kernel gσ (we use
σ0 = 10, which yields a significantly blurred image).

4.2. Deletion and preservation

Given an image x0, our goal is to summarize compactly
the effect of deleting image regions in order to explain the
behavior of the black box. One approach to this problem is
to find deletion regions that are maximally informative.

In order to simplify the discussion, in the rest of the pa-
per we consider black boxes f(x) ∈ RC that generate a
vector of scores for different hypotheses about the content
of the image (e.g. as a softmax probability layer in a neural
network). Then, we consider a “deletion game” where the
goal is to find the smallest deletion mask m that causes the
score fc(Φ(x0;m)) � fc(x0) to drop significantly, where
c is the target class. Finding m can be formulated as the
following learning problem:

m∗ = argmin
m∈[0,1]Λ

λ‖1−m‖1 + fc(Φ(x0;m)) (3)

where λ encourages most of the mask to be turned off
(hence deleting a small subset of x0). In this manner, we
can find a highly informative region for the network.

One can also play an symmetric “preservation game”,
where the goal is to find the smallest subset of the image
that must be retained to preserve the score fc(Φ(x0;m)) ≥
fc(x0): m∗ = argminm λ‖m‖1−fc(Φ(x0;m)). The main
difference is that the deletion game removes enough evi-
dence to prevent the network from recognizing the object in
the image, whereas the preservation game finds a minimal
subset of sufficient evidence.

Iterated gradients. Both optimization problems are
solved by using a local search by means of gradient descent
methods. In this manner, our method extracts information
from the black box f by computing its gradient, similar to
the approach of [15]. However, it differs in that it extracts
this information progressively, over several gradient eval-
uations, accumulating increasingly more information over
time.

4.3. Dealing with artifacts

By committing to finding a single representative pertur-
bation, our approach incurs the risk of triggering artifacts
of the black box. Neural networks, in particular, are known
to be affected by surprising artifacts [5, 10, 7]; these works
demonstrate that it is possible to find particular inputs that
can drive the neural network to generate nonsensical or un-
expected outputs. This is not entirely surprising since neu-
ral networks are trained discriminatively on natural image
statistics. While not all artifacts look “unnatural”, neverthe-
less they form a subset of images that is sampled with neg-
ligible probability when the network is operated normally.

espresso: 0.9964 espresso: 0.0000 Learned Mask

maypole: 0.9568 maypole: 0.0000 Learned Mask

Figure 5. From left to right: an image correctly classified with
large confidence by GoogLeNet [17]; a perturbed image that is
not recognized correctly anymore; the deletion mask learned with
artifacts. Top: A mask learned by minimizing the top five pre-
dicted classes by jointly applying the constant, random noise, and
blur perturbations. Note that the mask learns to add highly struc-
tured swirls along the rim of the cup (γ = 1, λ1 = 10−5, λ2 =
10−3, β = 3). Bottom: A minimizing-top5 mask learned by ap-
plying a constant perturbation. Notice that the mask learns to in-
troduce sharp, unnatural artifacts in the sky instead of deleting the
pole (γ = 0.1, λ1 = 10−4, λ2 = 10−2, β = 3).

Although the existence and characterization of artifacts
is an interesting problem per se, we wish to characterize
the behavior of black boxes under normal operating con-
ditions. Unfortunately, as illustrated in fig. 5, objectives
such as eq. (3) are strongly attracted by such artifacts, and
naively learn subtly-structured deletion masks that trigger
them. This is particularly true for the noise and constant
perturbations as they can more easily than blur create arti-
facts using sharp color contrasts (fig. 5, bottom row).

We suggests two approaches to avoid such artifacts in
generating explanations. The first one is that powerful
explanations should, just like any predictor, generalize as
much as possible. For the deletion game, this means not re-
lying on the details of a singly-learned mask m. Hence, we
reformulate the problem to apply the maskm stochastically,
up to small random jitter.

Second, we argue that masks co-adapted with network
artifacts are not representative of natural perturbations. As
noted before, the meaning of an explanation depends on the
meaning of the changes applied to the input x; to obtain a
mask more representative of natural perturbations we can
encourage it to have a simple, regular structure which can-
not be co-adapted to artifacts. We do so by regularizing m
in total-variation (TV) norm and upsampling it from a low
resolution version.

With these two modifications, eq. (3) becomes:

min
m∈[0,1]Λ

λ1‖1−m‖1 + λ2

∑

u∈Λ

‖∇m(u)‖ββ

+ Eτ [fc(Φ(x0(· − τ),m))], (4)
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Figure 6. Interrogating suppressive effects. Left to right: original
image with the learned mask overlaid; a boxed perturbation chosen
out of interest (the truck’s middle bounding box was chosen based
on the contrastive excitation backprop heatmap from fig. 2, row
6); another boxed perturbation based on the learned mask (target
softmax probabilities of for the original and perturbed images are
listed above).

where M(v) =
∑
u gσm(v/s − u)m(u). is the upsampled

mask and gσm is a 2D Gaussian kernel. Equation (4) can be
optimized using stochastic gradient descent.

Implementation details. Unless otherwise specified, the
visualizations shown were generated using Adam [3] to
minimize GoogLeNet’s [17] softmax probability of the tar-
get class by using the blur perturbation with the following
parameters: learning rate γ = 0.1, N = 300 iterations,
λ1 = 10−4, λ2 = 10−2, β = 3, upsampling a mask (28×28
for GoogLeNet) by a factor of δ = 8, blurring the upsam-
pled mask with gσm=5, and jittering the mask by drawing
an integer from the discrete uniform distribution on [0, τ)
where τ = 4. We initialize the mask as the smallest cen-
tered circular mask that suppresses the score of the original
image by 99% when compared to that of the fully perturbed
image, i.e. a fully blurred image.

5. Experiments
5.1. Interpretability

An advantage of the proposed framework is that the gen-
erated visualizations are clearly interpretable. For example,
the deletion game produces a minimal mask that prevents
the network from recognizing the object.

When compared to other techniques (fig. 2), this method
can pinpoint the reason why a certain object is recognized
without highlighting non-essential evidence. This can be
noted in fig. 2 for the CD player (row 7) where other vi-
sualizations also emphasize the neighboring speakers, and
similarly for the cliff (row 3), the street sign (row 4), and
the sunglasses (row 8). Sometimes this shows that only a
part of an object is essential: the face of the Pekenese dog
(row 2), the upper half of the truck (row 6), and the spoon
on the chocolate sauce plate (row 1) are all found to be min-
imally sufficient parts.

While contrastive excitation backprop generated

heatmaps that were most similar to our masks, our method
introduces a quantitative criterion (i.e., maximally sup-
pressing a target class score), and its verifiable nature (i.e.,
direct edits to an image), allows us to compare differing
proposed saliency explanations and demonstrate that our
learned masks are better on this metric. In fig. 6, row 2,
we show that applying a bounded perturbation informed
by our learned mask significantly suppresses the truck
softmax score, whereas a boxed perturbation on the truck’s
back bumper, which is highlighted by contrastive excitation
backprop in fig. 2, row 6, actually increases the score from
0.717 to 0.850.

The principled interpretability of our method also allows
us to identify instances when an algorithm may have learned
the wrong association. In the case of the chocolate sauce
in fig. 6, row 1, it is surprising that the spoon is highlighted
by our learned mask, as one might expect the sauce-filled jar
to be more salient. However, manually perturbing the im-
age reveals that indeed the spoon is more suppressive than
the jar. One explanation is that the ImageNet “chocolate
sauce” images contain more spoons than jars, which ap-
pears to be true upon examining some images. More gener-
ally, our method allows us to diagnose highly-predictive yet
non-intuitive and possibly misleading correlations by iden-
tified machine learning algorithms in the data.

5.2. Deletion region representativeness

To test that our learned masks are generalizable and ro-
bust against artifacts, we simplify our masks by further
blurring them and then slicing them into binary masks by
thresholding the smoothed masks by α ∈ [0 : 0.05 : 0.95]
(fig. 7, top; α ∈ [0.2, 0.6] tends to cover the salient part
identified by the learned mask). We then use these simpli-
fied masks to edit a set of 5,000 ImageNet images with con-
stant, noise, and blur perturbations. Using GoogLeNet [17],
we compute normalized softmax probabilities4 (fig. 7, bot-
tom). The fact that these simplified masks quickly suppress
scores as α increases for all three perturbations gives con-
fidence that the learned masks are identifying the right re-
gions to perturb and are generalizable to a set of extracted
masks and other perturbations that they were not trained on.

5.3. Minimality of deletions

In this experiments we assess the ability of our method
to correctly identify a minimal region that suppresses the
object. Given the output saliency map, we normalize its
intensities to lie in the range [0, 1], threshold it with h ∈
[0 : 0.1 : 1], and fit the tightest bounding box around the
resulting heatmap. We then blur the image in the box and
compute the normalized4 target softmax probability from

4p′ =
p− p0

p0 − pb
, where p, p0, pb are the masked, original, and fully

blurred images’ scores
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Figure 7. (Top) Left to right: original image, learned mask, and
simplified masks for sec. 5.2 (not shown: further smoothed mask).
(Bottom) Swift softmax score suppression is observed when using
all three perturbations with simplified binary masks (top) derived
from our learned masks, thereby showing the generality of our
masks.
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Figure 8. On average, our method generates the smallest bounding
boxes that, when used to blur the original images, highly suppress
their normalized softmax probabilities (standard error included).

GoogLeNet [17] of the partially blurred image.
From these bounding boxes and normalized scores, for

a given amount of score suppression, we find the small-
est bounding box that achieves that amount of suppression.
Figure 8 shows that, on average, our method yields the
smallest minimal bounding boxes when considering sup-
pressive effects of 80%, 90%, 95%, and 99%. These results
show that our method finds a small salient area that strongly
impacts the network.

5.4. Testing hypotheses: animal part saliency

From qualitatively examining learned masks for differ-
ent animal images, we noticed that faces appeared to be
more salient than appendages like feet. Because we pro-
duce dense heatmaps, we can test this hypothesis. From an
annotated subset of the ImageNet dataset that identifies the
keypoint locations of non-occluded eyes and feet of verte-
brate animals [11], we select images from classes that have
at least 10 images which each contain at least one eye and
foot annotation, resulting in a set of 3558 images from 76
animal classes (fig. 9). For every keypoint, we calculate the
average heatmap intensity of a 5 × 5 window around the

Figure 9. “tiger” (left two) and “bison” (right two) images with
eyes and feet annotations from [11]; our learned masks are over-
laid. The mean average feet:eyes intensity ratio for “tigers” (N =
25) is 3.82, while that for bisons (N = 22) is 1.07.

keypoint. For all 76 classes, the mean average intensity of
eyes were lower and thus more salient than that of feet (see
supplementary materials for class-specific results).

5.5. Adversarial defense

Adversarial examples [5] are often generated using a
complementary optimization procedure to our method that
learns a imperceptible pattern of noise which causes an im-
age to be misclassified when added to it. Using our re-
implementation of the highly effective one-step iterative
method (ε = 8) [5] to generate adversarial examples, our
method yielded visually distinct, abnormal masks compared
to those produced on natural images (fig. 10, left). We
train an Alexnet [4] classifier (learning rate λlr = 10−2,
weight decay λL1 = 10−4, and momentum γ = 0.9) to
distinguish between clean and adversarial images by using
a given heatmap visualization with respect to the top pre-
dicted class on the clean and adversarial images (fig. 10,
right); our method greatly outperforms the other methods
and achieves a discriminating accuracy of 93.6%.

Lastly, when our learned masks are applied back to their
corresponding adversarial images, they not only minimize
the adversarial label but often allow the original, predicted
label from the clean image to rise back as the top predicted
class. Our method recovers the original label predicted on
the clean image 40.64% of time and the ground truth label
37.32% (N = 5000). Moreover, 100% of the time the orig-
inal, predicted label was recovered as one of top-5 predicted
labels in the “mask+adversarial” setting. To our knowledge,
this is the first work that is able to recover originally pre-
dicted labels without any modification to the training set-up
and/or network architecture.

5.6. Localization and pointing

Saliency methods are often assessed in terms of weakly-
supervised localization and a pointing game [20], which
tests how discriminative a heatmap method is by calculat-
ing the precision with which a heatmap’s maximum point
lies on an instance of a given object class, for more harder
datasets like COCO [6]. Because the deletion game is meant
to discover minimal salient part and/or spurious correlation,
we do not expect it to be particularly competitive on local-
ization and pointing but tested them for completeness.

For localization, similar to [20, 2], we predict a bound-
ing box for the most dominant object in each of ∼50k



Figure 10. (Left) Difference between learned masks for clean
(middle) and adversarial (bottom) images (28 × 28 masks shown
without bilinear upsampling). (Right) Classification accuracy
for discriminating between clean vs. adversarial images using
heatmap visualizations (Ntrn = 4000, Nval = 1000).

ImageNet [13] validation images and employ three sim-
ple thresholding methods for fitting bounding boxes. First,
for value thresholding, we normalize heatmaps to be in the
range of [0, 1] and then threshold them by their value with
α ∈ [0 : 0.05 : 0.95]. Second, for energy thresholding [2],
we threshold heatmaps by the percentage of energy their
most salient subset covered with α ∈ [0 : 0.05 : 0.95]. Fi-
nally, with mean thresholding [20], we threshold a heatmap
by τ = αµI , where µI is the mean intensity of the heatmap
and α ∈ [0 : 0.5 : 10]. For each thresholding method, we
search for the optimal α value on a heldout set. Localization
error was calculated as the IOU with a threshold of 0.5.

Table 1 confirms that our method performs reason-
ably and shows that the three thresholding techniques af-
fect each method differently. Non-contrastive, excitation
backprop [20] performs best when using energy and mean
thresholding; however, our method performs best with
value thresholding and is competitive when using the other
methods: It beats gradient [15] and guided backprop [16]
when using energy thresholding; beats LRP [1], CAM [22],
and contrastive excitation backprop [20] when using mean
thresholding (recall from fig. 2 that the contrastive method
is visually most similar to mask); and out-performs Grad-
CAM [14] and occlusion [19] for all thresholding methods.

For pointing, table 2 shows that our method outperforms
the center baseline, gradient, and guided backprop methods
and beats Grad-CAM on the set of difficult images (images
for which 1) the total area of the target category is less than
25% of the image and 2) there are at least two different ob-
ject classes). We noticed qualitatively that our method did
not produce salient heatmaps when objects were very small.
This is due to L1 and TV regularization, which yield well-
formed masks for easily visible objects. We test two vari-
ants of occlusion [19], blur and variable occlusion, to in-
terrogate if 1) the blur perturbation with smoothed masks

Val-α* Err (%) Ene-α* Err Mea-α* Err
Grad [15] 0.25 46.0 0.10 43.9 5.0 41.7§

Guid [16, 8] 0.05 50.2 0.30 47.0 4.5 42.0§

Exc [20] 0.15 46.1 0.60 38.7 1.5 39.0§

C Exc [20] — — — — 0.0 57.0†

Feed [2] — — 0.95 38.8† — —
LRP [1] — — — — 1.0 57.8†

CAM [22] — — — — 1.0 48.1†

Grad-CAM [14] 0.30 48.1 0.70 48.0 1.0 47.5
Occlusion [19] 0.30 51.2 0.55 49.4 1.0 48.6

Mask‡ 0.10 44.0 0.95 43.1 0.5 43.2

Table 1. Optimal α thresholds and error rates from the weak
localization task on the ImageNet validation set using saliency
heatmaps to generate bounding boxes. †Feedback error rate are
taken from [2]; all others (contrastive excitation BP, LRP, and
CAM) are taken from [20]. §Using [20]’s code, we recalcu-
lated these errors, which are ≤ 0.4% of the originally reported
rates. ‡Minimized top5 predicted classes’ softmax scores and used
λ1 = 10−3 and β = 2.0 (examples in supplementary materials).

Ctr Grad Guid Exc CExc G-CAM Occ Occ§ V-Occ† Mask‡

All 27.93 36.40 32.68 41.78 50.95 41.10 44.50 45.41 42.31 37.49
Diff 17.86 28.21 26.16 32.73 41.99 30.59 36.45 37.45 33.87 30.64

Table 2. Pointing Game [20] Precision on COCO Val Subset (N ≈
20k). §Occluded with circles (r = 35/2) softened by gσm=10 and
used to perturb with blur (σ = 10). †Occluded with variable-sized
blur circles; from the top 10% most suppressive occlusions, the
one with the smallest radius is chosen and its center is used as the
point. ‡Used min. top-5 hyper-parameters (λ1 = 10−3, β = 2.0).

is most effective, and 2) using the smallest, highly sup-
pressive mask is sufficient (Occ§ and V-Occ in table 2 re-
spectively). Blur occlusion outperforms all methods except
contrast excitation backprop while variable while variable
occlusion outperforms all except contrast excitation back-
prop and the other occlusion methods, suggesting that our
perturbation choice of blur and principle of identifying the
smallest, highly suppressive mask is sound even if our im-
plementation struggles on this task (see supplementary ma-
terials for examples and implementation details).

6. Conclusions

We propose a comprehensive, formal framework for
learning explanations as meta-predictors. We also present
a novel image saliency paradigm that learns where an algo-
rithm looks by discovering which parts of an image most af-
fect its output score when perturbed. Unlike many saliency
techniques, our method explicitly edits to the image, mak-
ing it interpretable and testable. We demonstrate numerous
applications of our method, and contribute new insights into
the fragility of neural networks and their susceptibility to ar-
tifacts.
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Abstract

The problem of attribution is concerned with identifying
the parts of an input that are responsible for a model’s out-
put. An important family of attribution methods is based
on measuring the effect of perturbations applied to the in-
put.In this paper, we discuss some of the shortcomings of
existing approaches to perturbation analysis and address
them by introducing the concept of extremal perturbations,
which are theoretically grounded and interpretable. We also
introduce a number of technical innovations to compute ex-
tremal perturbations, including a new area constraint and
a parametric family of smooth perturbations, which allow
us to remove all tunable hyper-parameters from the opti-
mization problem. We analyze the effect of perturbations as
a function of their area, demonstrating excellent sensitivity
to the spatial properties of the deep neural network under
stimulation. We also extend perturbation analysis to the in-
termediate layers of a network. This application allows us
to identify the salient channels necessary for classification,
which, when visualized using feature inversion, can be used
to elucidate model behavior.

1. Introduction

Deep networks often have excellent prediction accuracy,
but the basis of their predictions is usually difficult to un-
derstand. Attribution aims at characterising the response
of neural networks by finding which parts of the network’s
input are the most responsible for determining its output.
Most attribution methods are based on backtracking the
network’s activations from the output back to the input,
usually via a modification of the backpropagation algo-
rithm [22, 30, 25, 31, 21, 2]. When applied to computer
vision models, these methods result in saliency maps that
highlight important regions in the input image.

However, most attribution methods do not start from a
definition of what makes an input region important for the
neural network. Instead, most saliency maps are validated
a-posteriori by either showing that they correlate with the

∗Work done as a contractor in FAIR. † denotes equal contributions.

5% 10% 20%

Figure 1: Extremal perturbations are regions of an image
that, for a given area (boxed), maximally affect the activa-
tion of a certain neuron in a neural network (i.e., “mouse-
trap” class score). As the area of the perturbation is in-
creased, the method reveals more of the image, in order of
decreasing importance. For clarity, we black out the masked
regions; in practice, the network sees blurred regions.

image content (e.g., by highlighting relevant object cate-
gories), or that they find image regions that, if perturbed,
have a large effect on the network’s output (see Sec. 2).

Some attribution methods, on the other hand, directly
perform an analysis of the effect of perturbing the network’s
input on its output [30, 19, 6, 4]. This usually amounts to
selectively deleting (or preserving) parts of the input and
observing the effect of that change to the model’s output.
The advantage is that the meaning of such an analysis is
clear from the outset. However, this is not as straight-
forward as it may seem on a first glance. First, since it
is not possible to visualise all possible perturbations, one
must find representative ones. Since larger perturbations
will have, on average, a larger effect on the network, one
is usually interested in small perturbations with a large ef-
fect (or large perturbations with a small effect). Second,
Fong and Vedaldi [6] show that searching for perturbations
with a large effect on the network’s output usually results
in pathological perturbations that trigger adversarial effects
in the network. Characterizing instead the typical behavior
of the model requires restricting the search to more repre-
sentative perturbations via regularization terms. This results
in an optimization problem that trades off maximizing the
effect of the perturbation with its smoothness and size. In
practice, this trade off is difficult to control numerically and
somewhat obscures the meaning of the analysis.

In this paper, we make three contributions. First, instead
of mixing several effects in a single energy term to optimize
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Figure 2: Comparison with other attribution methods. We compare our extremal perturbations (optimal area a∗ in box)
to several popular attribution methods: gradient [22], guided backpropagation [25], Grad-CAM [21], and RISE [19].

as in Fong and Vedaldi [6], we introduce the concept of ex-
tremal perturbations. A perturbation is extremal if it has
maximal effect on the network’s output among all perturba-
tions of a given, fixed area. Furthermore, the perturbations
are regularised by choosing them within family with a min-
imum guaranteed level of smoothness. In this way, the op-
timisation is carried over the perturbation effect only, with-
out having to balance several energy terms as done in [6].
Lastly, by sweeping the area parameter, we can study the
perturbation’s effect w.r.t. its size.

The second contribution is technical and is to provide a
concrete algorithm to calculate the extremal perturbations.
First, in the optimisation we must constrain the perturbation
size to be equal to a target value. To this end, we introduce
a new ranking-based area loss that can enforce these type
of constraints in a stable and efficient manner. This loss,
which we believe can be beneficial beyond our perturbation
analysis, can be interpreted as a hard constraint, similar to
a logarithmic barrier, differing from the soft penalty on the
area in Fong and Vedaldi [6]. Second, we construct a para-
metric family of perturbations with a minimum guarantee
amount of smoothness. For this, we use the (smooth)-max-

convolution operator and a perturbation pyramid.
As a final contribution, we extend the framework of

perturbation analysis to the intermediate activations of a
deep neural network rather than its input. This allows us
to explore how perturbations can be used beyond spatial,
input-level attribution, to channel, intermediate-layer attri-
bution. When combined with existing visualization tech-
niques such as feature inversion [13, 18, 15, 27], we demon-
strate how intermediate-layer perturbations can help us un-
derstand which channels are salient for classification.

2. Related work

Backpropagation-based methods. Many attribution
techniques leverage backpropagation to track information
from the network’s output back to its input, or an interme-
diate layer. Since they are based on simple modifications of
the backpropagation algorithm, they only require a single
forward and backward pass through the model, and are thus
efficient. [22]’s gradient method, which uses unmodified
backprop, visualizes the derivative of the network’s output
w.r.t. the input image. Other works (e.g., DeCovNet [30],



Guided Backprop [25], and SmoothGrad [24]) reduce the
noise in the gradient signal by tweaking the backprop rules
of certain layers. Other methods generate visualizations
by either combining gradients, network weights and/or
activations at a specific layer (e.g., CAM [32] and Grad-
CAM [21]) or further modify the backpropn rules to have
a probabilistic or local approximation interpretation (e.g.,
LRP [2] and Excitation Backprop [31]).

Several papers have shown that some (but not all)
backpropagation-based methods produce the same saliency
map regardless of the output neuron being analysed [12],
or even regardless of network parameters [1]. Thus, such
methods may capture average network properties but may
not be able to characterise individual outputs or intermedi-
ate activations, or in some cases the model parameters.

Perturbation-based methods. Another family of ap-
proaches perturbs the inputs to a model and observes resul-
tant changes to the outputs. Occlusion [30] and RISE [19]
occlude an image using regular or random occlusions pat-
terns, respectively, and weigh the changes in the output by
the occluding patterns. Meaningful perturbations [6] opti-
mize a spatial perturbation mask that maximally affects a
model’s output. Real-time saliency [4] builds on [6] and
learns to predict such a perturbation mask with a second
neural network. Other works have leveraged perturbations
at the input [23, 29] and intermediate layers [28] to perform
weakly and fully supervised localization.

Approximation-based methods. Black-box models can
be analyzed by approximating them (locally) with simpler,
more interpretable models. The gradient method of [22]
and, more explicitly, LIME [20], do so using linear mod-
els. Approximations using decision trees or other models
are also possible, although less applicable to visual inputs.

Visualizations of intermediate activations. To charac-
terize a filter’s behavior, Zeiler and Fergus [30] show dataset
examples from the training set that maximally activate that
filter. Similarly, activation maximization [22] learns an in-
put image that maximally activates a filter. Feature inver-
sion [13] learns an image that reconstructs a network’s inter-
mediate activations while leveraging a natural image prior
for visual clarity. Subsequent works tackled the problem
of improving the natural image prior for feature inversion
and/or activation maximization [27, 18, 15, 17, 16]. Re-
cently, some methods have measured the performance of
single [3, 33] and combinations of [10, 7] filter activations
on probe tasks like classification and segmentation to iden-
tify which filter(s) encode what concepts.

One difficulty in undertaking channel attribution is that,
unlike spatial attribution, where a salient image region is
naturally interpretable to humans, simply identifying “im-
portant channels” is insufficient as they are not naturally
interpretable. To address this, we combine the aforemen-

tioned visualization techniques with channel attribution.

3. Method
We first summarize the perturbation analysis of [6] and

then introduce our extremal perturbations framework.

3.1. Perturbation analysis

Let x : Ω → R3 be a colour image, where Ω =
{0, . . . ,H − 1} × {0, . . . ,W − 1} is a discrete lattice, and
let Φ be a model, such as a convolutional neural network,
that maps the image to a scalar output value Φ(x) ∈ R.
The latter could be an output activation, corresponding to a
class prediction score, in a model trained for image classifi-
cation, or an intermediate activation.

In the following, we investigate which parts of the input
x strongly excite the model, causing the response Φ(x) to
be large. In particular, we would like to find a mask m as-
signing to each pixel u ∈ Ω a value m(u) ∈ {0, 1}, where
m(u) = 1 means that the pixel strongly contributes to the
output and m(u) = 0 that it does not.

In order to assess the importance of a pixel, we use the
mask to induce a local perturbation of the image, denoted
x̂ = m ⊗ x. The details of the perturbation model are
discussed below, but for now it suffices to say that pixels
for which m(u) = 1 are preserved, whereas the others are
blurred away. The goal is then to find a small subset of
pixels that, when preserved, are sufficient to retain a large
value of the output Φ(m⊗ x).

Fong and Vedaldi [6] propose to identify such salient
pixels by solving an optimization problem of the type:

mλ,β = argmax
m

Φ(m⊗ x)− λ‖m‖1 − βS(m). (1)

The first term encourages the network’s response to be
large. The second encourages the mask to select a small
part of the input image, blurring as many pixels as possible.
The third further regularises the smoothness of the mask by
penalising irregular shapes.

The problem with this formulation is that the meaning
of the trade-off established by optimizing eq. (1) is unclear
as the three terms, model response, mask area and mask
regularity, are not commensurate. In particular, choosing
different λ and β values in eq. (1) will result in different
masks without a clear way of comparing them.

3.2. Extremal perturbations

In order to remove the balancing issues with eq. (1), we
propose to constrain the area of the mask to a fixed value
(as a fraction a|Ω| of the input image area). Furthermore,
we control the smoothness of the mask by choosing it in a
fixed setM of sufficiently smooth functions. Then, we find
the mask of that size that maximizes the model’s output:

ma = argmax
m: ‖m‖1=a|Ω|, m∈M

Φ(m⊗ x). (2)
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Figure 3: Extremal perturbations and monotonic effects. Left: “porcupine” masks computed for several areas a (a in
box). Right: Φ(ma⊗x) (preservation; blue) and Φ((1−ma)⊗x) (deletion; orange) plotted as a function of a. At a ≈ 15%
the preserved region scores higher than preserving the entire image (green). At a ≈ 20%, perturbing the complementary
region scores similarly to fully perturbing the entire image (red).

Note that the resulting mask is a function of the chosen area
a only. With this, we can define the concept of extremal
perturbation as follows. Consider a lower bound Φ0 on the
model’s output (for example we may set Φ0 = τΦ(x) to
be a fraction τ of the model’s output on the unperturbed
image). Then, we search for the smallest mask that achieves
at least this output level. This amounts to sweeping the area
parameter a in eq. (2) to find

a∗ = min{a : Φ(ma ⊗ x) ≥ Φ0}. (3)

The mask ma∗ is extremal because preserving a smaller
portion of the input image is not sufficient to excite the net-
work’s response above Φ0. This is illustrated in fig. 3.

Interpretation. An extremal perturbation is a single mask
ma∗ that results in a large model response, in the sense that
Φ(ma∗ ⊗ x) ≥ Φ0. However, due to extremality, we also
know that any smaller mask does not result in an equally
large response: ∀m : ‖m‖1 < ‖ma∗‖1 ⇒ Φ(m⊗ x) <
Φ0. Hence, a single extremal mask is informative because it
characterises a whole family of input perturbations.

This connects extremal perturbations to methods
like [20, 6], which explain a network by finding a succinct
and interpretable description of its input-output mapping.
For example, the gradient [22] and LIME [20] approximate
the network locally around an input x using the Taylor ex-
pansion Φ(x′) ≈ 〈∇Φ(x),x′ − x〉+ Φ(x); their explana-
tion is the gradient ∇Φ(x) and their perturbations span a
neighbourhood of x.

Preservation vs deletion. Formulation (2) is analogous to
what [6] calls the “preservation game” as the goal is to find a
mask that preserves (maximises) the model’s response. We
also consider their “deletion game” obtaining by optimising
Φ((1−m)⊗x) in eq. (2), so that the goal is to suppress the
response when looking outside the mask, and the hybrid [4],
obtained by optimising Φ(m⊗x)−Φ((1−m)⊗x),where
the goal is to simultaneously preserve the response inside
the mask and suppress it outside

3.3. Area constraint

Enforcing the area constraint in eq. (2) is non-trivial;
here, we present an effective approach to do so (other ap-
proaches like [9] do not encourage binary masks). First,
since we would like to optimize eq. (2) using a gradient-
based method, we relax the mask to span the full range
[0, 1]. Then, a possible approach would be to count how
many values m(u) are sufficiently close to the value 1 and
penalize masks for which this count deviates from the target
value a|Ω|. However, this approach requires soft-counting,
with a corresponding tunable parameter for binning.

In order to avoid such difficulties, we propose instead
to vectorize and sort in non-decreasing order the values of
the mask m, resulting in a vector vecsort(m) ∈ [0, 1]|Ω|.
If the mask m satisfies the area constraint exactly, then the
output of vecsort(m) is a vector ra ∈ [0, 1]|Ω| consisting of
(1−a)|Ω| zeros followed by a|Ω| ones. This is captured by
the regularization term: Ra(m) = ‖ vecsort(m) − ra‖2.
We can then rewrite eq. (2) as

ma = argmax
m∈M

Φ(m⊗ x)− λRa(m). (4)

Note that we have reintroduced a weighting factor λ in the
formulation, so on a glance we have lost the advantage of
formulation (2) over the one of eq. (1). In fact, this is not
the case: during optimization we simply set λ to be as large
as numerics allow it as we expect the area constraint to be
(nearly) exactly satisfied; similarly to a logarithmic barrier,
λ then has little effect on which mask ma is found.

3.4. Perturbation operator

In this section we define the perturbation operator m ⊗
x. To do so, consider a local perturbation operator
π(x;u, σ) ∈ R3 that applies a perturbation of intensity
σ ≥ 0 to pixel u ∈ Ω. We assume that the lowest inten-
sity σ = 0 corresponds to no perturbation, i.e. π(x;u, 0) =



x(u). Here we use as perturbations the Gaussian blur1

πg(x;u, σ) =

∑
v∈Ω gσ(u− v)x(v)∑
v∈Ω gσ(u− v)

, gσ(u) = e−
‖u‖2
2σ2 .

The mask m then doses the perturbation spatially: (m ⊗
x)(u) = π(x;u, σmax · (1−m(u))) where σmax is the max-
imum perturbation intensity.2

3.5. Smooth masks

Next, we define the space of smooth masksM. For this,
we consider an auxiliary mask m̄ : Ω → [0, 1]. Given
that the range of m̄ is bounded, we can obtain a smooth
mask m by convolving m̄ by a Gaussian or similar kernel
k : Ω→ R+

3 via the typical convolution operator:

m(u) = Z−1
∑

v∈Ω

k(u− v)m̄(v) (5)

where Z normalizes the kernel to sum to one. However, this
has the issue that setting m̄(u) = 1 does not necessarily
result in m(u) = 1 after filtering, and we would like our
final mask to be (close to) binary.

To address this issue, we consider the max-convolution
operator:

m(u) = max
v∈Ω

k(u− v)m̄(v). (6)

This solves the issue above while at the same time guar-
anteeing that the smoothed mask does not change faster
than the smoothing kernel, as shown in the following lemma
(proof in supp. mat.).

Lemma 1. Consider functions m̄,k : Ω → [0, 1] and let
m be defined as in eq. (6). If k(0) = 1, then m̄(u) ≤
m(u) ≤ 1 for all u ∈ Ω; in particular, if m̄(u) = 1, then
m(u) = 1 as well. Furthermore, if k is Lipschitz contin-
uous with constant K, then m is also Lipschitz continuous
with a constant at most as large as K.

The max operator in eq. (6) yields sparse gradients.
Thus, to facilitate optimization, we introduce the smooth
max operator4, smax, to replace the max operator. For a
function f(u), u ∈ Ω and temperature T > 0:

smax
u∈Ω;T

f(u) =

∑
u∈Ω f(u) exp f(u)/T∑
u∈Ω exp f(u)/T

(7)

1 Another choice is the fade-to-black perturbation which, for 0 ≤ σ ≤
1, is given by πf (x;u, σ) = (1− σ) · x(u).

2 For efficiency, this is implemented by generating a perturbation pyra-
mid π(x; ·, σmax · l/L), l = 0, . . . , L that contains L + 1 progressively
more perturbed versions of the image. Then m ⊗ x can be computed via
bilinear interpolation by using (u,m(u)) as an indices in the pyramid.

3It is easy to show that in this case the derivative of the smoothed mask
‖|∇(k ∗ m̄)‖| ≤ ‖∇k‖ is always less than the one of the kernel.

4Not to be confused with the softmax with temperature, as in [8].
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Figure 4: Convolution operators for smooth masks.
Gaussian smoothing a mask (blue) with the typical convolu-
tion operator yields a dampened, smooth mask (green). Our
max-convolution operator mitigates this effect while still
smoothing (red solid). Our smax operator, which yields
more distributed gradients than max, varies between the
other two convolution operators (red dotted).

The smax operator smoothly varies from behaving like the
mean operator in eq. (5) as T → ∞ to behaving like the
max operator as T → 0 (see fig. 4). This operator is used
instead of max in eq. (6).

Implementation details. In practice, we use a smaller
parameterization mask m̄ defined on a lattice Ω̄ =
{0, . . . , H̄−1}×{0, . . . , W̄ −1}, where the full-resolution
mask m has dimensions H = ρH̄ and W = ρW̄ . We then
modify (6) to perform upsampling in the same way as the
standard convolution transpose operator.

4. Experiments
Implementation details. Unless otherwise noted, all vi-
sualizations use the ImageNet validation set, the VGG16
network and the preservation formulation (Sec. 3.2).
Specifically, Φ(x) is the classification score (before soft-
max) that network associates to the ground-truth class
in the image. Masks are computed for areas a ∈
{0.05, 0.1, 0.2, 0.4, 0.6, 0.8}. To determine the optimal area
a∗ of the extremal perturbations (3), we set the threshold
Φ0 = Φ(x) (which is the score on the unperturbed image).

Masks are optimised using SGD, initializing them with
all ones (everything preserved). SGD uses momentum 0.9
and 1600 iterations. λ is set to 300 and doubled at 1/3
and 2/3 of the iterations and, in eq. (7), 1/T ≈ 20. Be-
fore upsampling, the kernel k(u) = k(‖u‖) is a radial ba-
sis function with profile k(z) = exp

(
max{0, z − 1}2/4

)
,

chosen so that neighbour disks are centrally flat and then
decay smoothly.

4.1. Qualitative comparison

Figure 2 shows a qualitative comparison between our
method and others. We see that our criterion of Φ0 = Φ(x)
chooses fairly well-localized masks in most cases. Masks
tend to cover objects tightly, are sharp, and clearly identify a
region of interest in the image. Figure 5 shows what the net-
work considered to be most discriminative (a = 5%; e.g.,



os
tri

ch

5% 10% 20%

En
gl

ish
 fo

xh
ou

nd

5% 10% 20%

ba
nj

o

5% 10% 20%

ca
nn

on

5% 10% 20%

tu
sk

er

5% 10% 20%

im
pa

la

5% 10% 20%

ga
rd

en
 sp

id
er

5% 10% 20%

Figure 5: Area growth. Although each mask is learned
independently, these plots highlight what the network con-
siders to be most discriminative and complete. The bar
graph visualizes Φ(ma � x) as a normalized fraction of
Φ0 = Φ(x) (and saturates after exceeding Φ0 by 25%).
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Figure 6: Comparison with [6]. Our extremal perturba-
tions (top) vs. masks from Fong and Vedaldi [6] (bottom).

banjo fret board, elephant tusk) and complete (a = 20%) as
the area increases. We notice that evidence from several ob-
jects accumulates monotonically (e.g., impala and spider)
and that foreground (e.g., ostrich) or discriminative parts
(e.g., dog’s nose) are usually sufficient.

Figure 7: Sanity check [1]. Model weights are progres-
sively randomized from fc8 to conv1 1 in VGG16, demon-
strating our method’s sensitivity to model weights.

VOC07 Test (All/Diff) COCO14 Val (All/Diff)

Method VGG16 ResNet50 VGG16 ResNet50

Grad 76.3/56.9 72.3/56.8 37.7/31.4 35.0/29.4
DConv 67.5/44.1 68.6/44.7 30.7/23.0 30.0/21.9
Guid. 75.9/53.0 77.2/59.5 39.1/31.4 42.1/35.3
MWP 77.1/56.6 84.4/70.8 39.8/32.8 49.6/43.9
cMWP 79.9/66.5 90.6/ 82.2 49.7/44.3 58.5/ 53.6
RISE* 87.3/—– 88.9/—– 50.7/—– 55.6/—–
GCAM 86.6/ 74.0 90.4/ 82.3 54.2/ 49.0 57.3/ 52.3
Ours 88.7/ 75.5 86.3/73.4 53.4/ 47.7 55.7/46.9

Table 1: Pointing game. Mean accuracy on the pointing
game over the full data splits and a subset of difficult images
(defined in [31]). Results from PyTorch re-implementation
(* except RISE, which is copied from [19]; RISE VOC re-
sults excluded the VOC-defined difficult images).

In fig. 6, we compare our masks to those of Fong
and Vedaldi [6]. The stability offered by controlling the
area of the perturbation is obvious in these examples.
Lastly, we visualize a sanity check proposed in Adebayo
et al. [1] in fig. 7 (we use the “hybrid” formulation). Un-
like other backprop-based methods, our visualizations be-
come significantly different upon weight randomization
(see supp. mat. for more qualitative examples).

4.2. Pointing game

A common approach to evaluate attribution methods is
to correlate their output with semantic annotations in im-
ages. Here we consider in particular the pointing game of
Zhang et al. [31]. For this, an attribution method is used
to compute a saliency map for each of the object classes
present in the image. One scores a hit if the maximum point
in the saliency map is contained within the object; The over-
all accuracy is the number of hits over number of hits plus
misses.

Table 1 shows results for this metric and compares our
method against the most relevant work in the literature on
PASCAL VOC [5] (using the 2007 test set of 4952 images)
and COCO [11] (using the 2014 validation set of≈ 50k im-



ages). We see that our method is competitive with VGG16
and ResNet50 networks. In contrast, Fong and Vedaldi’s [6]
was not competitive in this benchmark (although they re-
ported results using GoogLeNet).

Implementation details. Since our masks are binary,
there is no well defined maximum point. To ap-
ply our method to the pointing game, we thus run
it for areas {0.025, 0.05, 0.1, 0.2} for PASCAL and
{0.018, 0.025, 0.05, 0.1} for COCO (due to the smaller ob-
jects in this dataset). The binary masks are summed and
a Gaussian filter with standard deviation equal to 9% of
the shorter side of the image applied to the result to con-
vert it to a saliency map. We use the original Caffe models
of [31] converted to PyTorch and use the “hybrid” preserva-
tion/deletion formulation of our method.

4.3. Monotonicity of visual evidence

Eq. (2) implements the “preservation game” and
searches for regions of a given area that maximally activate
the networks’ output. When this output is the confidence
score for a class, we hypothesise that hiding evidence from
the network would only make the confidence lower, i.e., we
would expect the effect of maximal perturbations to be or-
dered consistently with their size:

a1 ≤ a2 ⇒ Φ(ma1 ⊗ x) ≤ Φ(ma2 ⊗ x) (8)

However, this may not always be the case. In order to quan-
tify the frequency of this effect, we test whether eq. (8)
holds for all a1, a2 < a∗, where a∗ is the optimal area of
the extremal perturbation (eq. (3), where Φ0 = Φ(x)). Em-
pirically, we found that this holds for 98.45% of ImageNet
validation images, which indicates that evidence is in most
cases integrated monotonically by the network.

More generally, our perturbations allow us to sort and
investigate how information is integrated by the model in
order of importance. This is shown in several examples
in fig. 5 where, as the area of the mask is progressively in-
creased, different parts of the objects are prioritised.

5. Attribution at intermediate layers
Lastly, we extend extremal perturbations to the direct

study of the intermediate layers in neural networks. This
allows us to highlight a novel use case of our area loss and
introduce a new technique for understanding which chan-
nels are salient for classification.

As an illustration, we consider in particular channel-wise
perturbations. Let Φl(x) ∈ RKl×Hl×Wl be the intermedi-
ate representation computed by a neural network Φ up to
layer l and let Φl+ : RKl×Hl×Wl → R represent the rest of
model, from layer l to the last layer. We then re-formulate
the preservation game from eq. (4) as:

ma = argmax
m

Φl+(m⊗ Φl(x))− λRa(m). (9)
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Figure 8: Attribution at intermediate layers. Left: This
is visualization (eq. (11)) of the optimal channel attribution
mask ma∗ , where a∗ = 25 channels, as defined in eq. (10).
Right: This plot shows that class score monotonically in-
creases as the area (as the number of channels) increases.

Here, the mask m ∈ [0, 1]Kl is a vector with one element
per channel which element-wise multiplies with the activa-
tions Φl(x), broadcasting values along the spatial dimen-
sions. Then, the extremal perturbation ma∗ is selected by
choosing the optimal area

a∗ = min{a : Φl+(ma ⊗ Φl(x)) ≥ Φ0}. (10)

We assume that the output Φl+ is the pre-softmax score for
a certain image class and we set the Φ0 = Φ(x) to be the
model’s predicted value on the unperturbed input (fig. 8).

Implementation details. In these experiments, we use
GoogLeNet [26] and focus on layer l =inception4d,
where Hl = 14,Wl = 14,Kl = 528. We optimize eq. (9)
for 300 iterations with a learning rate of 10−2. The pa-
rameter λ linearly increases from 0 to 1500 during the first
150 iterations, after which λ = 1500 stays constant. We
generate channel-wise perturbation masks for areas a ∈
{1, 5, 10, 20, 25, 35, 40, 50, 60, 70, 80, 90, 100, 150, 200,
250, 300, 350, 400, 450, 528}, where a denotes the number
of channels preserved.

The saliency heatmaps in fig. 8 and fig. 9 for channel-
wise attribution are generated by summing over the channel
dimension the element-wise product of the channel attribu-
tion mask and activation tensor at layer l:

v =
∑

k∈K
mk
a∗ ⊗ Φkl (x) (11)

5.1. Visualizing per-instance channel attribution

Unlike per-instance input-level spatial attribution, which
can be visualized using a heatmap, per-instance interme-
diate channel attribution is more difficult to visualize be-
cause simply identifying important channels is not neces-
sarily human-interpretable. To address this problem, we use
feature inversion [14, 18] to find an image that maximises
the dot product of the channel attribution vector and the ac-
tivation tensor (see [18] for more details):
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Figure 9: Per-instance channel attribution visualiza-
tion. Left: input image overlaid with channel saliency map
(eq. (11)). Middle: feature inversion of original activation
tensor. Right: feature inversion of activation tensor per-
turbed by optimal channel mask ma∗ . By comparing the
difference in feature inversions between un-perturbed (mid-
dle) and perturbed activations (right), we can identify the
salient features that our method highlights.

I∗ = argmax
I
{(ma∗ ⊗ Φl(x)) · Φl(I)}. (12)

where m∗a is optimal channel attribution mask at layer l for
input image x and Φl(I) is the activation tensor at layer l
for image I , the image we are learning.

This inverted image allows us to identify the parts of the
input image that are salient for a particular image to be cor-
rectly classified by a model. We can compare the feature in-
versions of activation tensors perturbed with channel mask
(right column in fig. 9) to the inversions of original, unper-
turbed activation tensors (middle column) to get a clear idea
of the most discriminative features of an image.

Since the masks are roughly binary, multiplying m∗a with
the activation tensor Φl(x) in eq. (12) zeroes out the acti-
vations of non-salient channels. Thus, the differences in
the feature inversions of original and perturbed activations
in fig. 9 highlight the image regions that are encoded by the
salient channels identified in our attribution masks (i.e., the
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Figure 10: Discovery of salient, class-specific channels.
By analyzing m̄c, the average over all ma∗ for class c
(see Sec. 5.2), we automatically find salient, class-specific
channels like these. First column: channel feature inver-
sions; all others: dataset examples.

channels that are not zeroed out in eq. (12)).

5.2. Visualizing per-class channel attribution

We can also use channel attribution to identify impor-
tant, class-specific channels. In contrast to other methods,
which explicitly aim to find class-specific channels and/or
directions at a global level [7, 10, 33], we are able to sim-
ilarly do so “for free” using only our per-instance channel
attribution masks. After estimating an optimal masks ma∗

for all ImageNet validation images, we then create a per-
class attribution mask m̄c ∈ [0, 1]K by averaging the opti-
mal masks of all images in a given class c. Then, we can
identify the most important channel for a given class as fol-
lows: k∗c = maxk∈K m̄k

c . In fig. 10, we visualize two such
channels via feature inversions. Qualitatively, these feature
inversions of channels k∗c are highly class-specific.

6. Conclusion
We have introduced the framework of extremal pertur-

bation analysis, which avoids some of the issues of prior
work that use perturbations to analyse neural networks. We
have also presented a few technical contributions to com-
pute such extremal perturbation. Among those, the rank-
order area constraint can have several other applications
in machine learning beyond the computation of extremal
perturbations. Lastly, we have extended the perturbations
framework to perturbing intermediate activations and used
this to explore a number of properties of the representa-
tion captured by a model. In particular, we have visualized,
likely for the first time, the difference between perturbed
and unperturbed activations using a representation inversion
technique.
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Net2Vec: Quantifying and Explaining

how Concepts are Encoded by Filters in
Deep Neural Networks

The following paper was presented as a spotlight presentation at the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) at Salt Lake City, Utah,
USA in 2018 (Fong et al., 2018b).1
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Abstract

In an effort to understand the meaning of the intermedi-
ate representations captured by deep networks, recent pa-
pers have tried to associate specific semantic concepts to
individual neural network filter responses, where interest-
ing correlations are often found, largely by focusing on ex-
tremal filter responses. In this paper, we show that this ap-
proach can favor easy-to-interpret cases that are not neces-
sarily representative of the average behavior of a represen-
tation.

A more realistic but harder-to-study hypothesis is that se-
mantic representations are distributed, and thus filters must
be studied in conjunction. In order to investigate this idea
while enabling systematic visualization and quantification
of multiple filter responses, we introduce the Net2Vec frame-
work, in which semantic concepts are mapped to vectorial
embeddings based on corresponding filter responses. By
studying such embeddings, we are able to show that 1., in
most cases, multiple filters are required to code for a con-
cept, that 2., often filters are not concept specific and help
encode multiple concepts, and that 3., compared to single
filter activations, filter embeddings are able to better char-
acterize the meaning of a representation and its relationship
to other concepts.

1. Introduction

While deep neural networks keep setting new records in
almost all problems in computer vision, our understanding
of these black-box models remains very limited. Without
developing such an understanding, it is difficult to charac-
terize and work around the limitations of deep networks,
and improvements may only come from intuition and trial-
and-error.

For deep learning to mature, a much better theoretical
and empirical understanding of deep networks is thus re-
quired. There are several questions that need answering,
such as how a deep network is able to solve a problem such

Figure 1. The diversity of BRODEN [4] images that most acti-
vate certain AlexNet conv5 filters motivates us to investigate to
what extent a single filter encodes a concept fully, without need-
ing other units, and exclusively, without encoding other concepts.
An image’s corner number n denotes that it is the n-th most max-
imally activating image for the given filter. Masks were generated
by our slightly modified NetDissect [4] approach (section 3.1.1)
and are upsampled first before thresholding for smoothness.

as classifying an image, or how it can generalize so well de-
spite having access to limited training data in relation to its
own capacity [23]. In this paper, we ask in particular what a
convolutional neural network has learned to do once train-
ing is complete. A neural network can be seen as a sequence
of functions, each mapping an input image to some interme-
diate representation. While the final output of a network is
usually easy to interpret (as it provides, hopefully, a solu-
tion to the task that the network was trained to solve), the
meaning of the intermediate layers is far less clear. Under-
standing the information carried by these representations is



a first step to understanding how these networks work.
Several authors have researched the possibility that indi-

vidual filters in a deep network are responsible for captur-
ing particular semantic concepts. The idea is that low-level
primitives such as edges and textures are recognized by ear-
lier layers, and more complex objects and scenes by deeper
ones. An excellent representative of this line of research is
the recent Network Dissection approach by [4]. The authors
of this paper introduce a new dataset, BRODEN, which
contains pixel-level segmentation for hundreds of low- and
high-level visual concepts, from textures to parts and ob-
jects. They then study the correlation between extremal fil-
ter responses and such concepts, seeking for filters that are
strongly responsive for particular ones.

While this and similar studies [24, 22, 10] did find clear
correlations between feature responses and various con-
cepts, such an interpretation has intrinsic limitations. This
can be seen from a simple counting argument: the num-
ber of available feature channels is usually far smaller than
the number of different concepts that a neural network may
need to encode to interpret a complex visual scene. This
suggests that, at the very least, the representation must use
combinations of filter responses to represent concepts or, in
other words, be at least in part distributed.

Overview. The goal of this paper is to go beyond looking
at individual filters, and to study instead what information
is captured by combinations of neural network filters. In
this paper, we conduct a thorough analysis to investigate
how semantic concepts, such as objects and their parts, are
encoded by CNN filters. In order to make this analysis man-
ageable, we introduce the Net2Vec framework (section 3),
which aligns semantic concepts with filter activations. It
does so via learned concept embeddings that are used to
weight filter activations to perform semantic tasks like seg-
mentation and classification. Our concept vectors can be
used to investigate both quantitatively and qualitatively the
“overlap” of filters and concepts. Our novelty lies in outlin-
ing methods that go beyond simply demonstrating that mul-
tiple filters better encode concepts that single ones [2, 21] to
quantifying and describing how a concept is encoded. Prin-
cipally, we gain unique, interpretive power by formulating
concepts vectors as embeddings.

Using Net2Vec, we look first at two questions (sec-
tion 4): (1) To what extent are individual filters sufficient to
express a concept? Or, are multiple filters required to code
for a single concept? (2) To what extent does a filter exclu-
sively code for a single concept? Or, is a filter shared by
many, diverse concepts? While answers to these questions
depend on the specific filter or concept under consideration,
we demonstrate how to quantify the “overlap” between fil-
ters and concepts and show that there are many cases in
which both notions of exclusive overlap do not hold. That

is, if we were to interpret semantic concepts and filter ac-
tivations as corresponding set of images, in the resulting
Venn’s diagram the sets would intersect partially but neither
kind of set would contain or be contained by the other.

While quantifying the relationship between concepts and
representation may seem an obvious aim, so far much of the
research on explaining how concepts are encoded by deep
networks roughly falls into two more qualitative categories:
(1) Interpretable visualizations of how single filters encode
semantic concepts; (2) Demonstrations of distributive en-
coding with limited explanatory power of how a concept
is encoded. In this work, we present methods that seek to
marry the interpretive benefits of single filter visualizations
with quantitative demonstrations of how concepts are en-
coded across multiple filters (section 5).

As part of our analysis, we also highlight the problem
with visualizing only the inputs that maximally activate a
filter and propose evaluating the power of explanatory visu-
alizations by how well they can explain the whole distribu-
tion of filter activations (section 5.1).

2. Related Work
Visualizations. Several methods have been proposed to
explain what a single filter encodes by visualizing a
real [22] or generated [10, 17, 14] input that most activates
a filter; these techniques are often used to argue that sin-
gle filters substantially encode a concept. In contrast, [20]
shows that visualizing the real image patches that most ac-
tivate a layer’s filters after a random basis has been applied
also yields semantically, coherent patches. [24, 4] visualize
segmentation masks extracted from filter activations for the
most confident or maximally activating images; they also
evaluate their visualizations using human judgments.

Distributed Encodings. [2] demonstrates that most PAS-
CAL classes require more than a few hidden units to
perform classification well. Most similar to [24, 4], [6]
concludes that only a few hidden units encode semantic
concepts robustly by measuring the overlap between im-
age patches that most activate a hidden unit with ground
truth bounding boxes and collecting human judgments on
whether such patches encode systematic concepts. [21]
compares using individual filter activations with using clus-
ters of activations from all units in a layer and shows that
their clusters yielded better parts detectors and qualitatively
correlated well with semantic concepts. [3] probes mid-
layer filters by training linear classifiers on their activations
and analyzing them at different layers and points of training.

3. Net2Vec
With our Net2Vec paradigm, we propose aligning con-

cepts to filters in a CNN by (a) recording filter activations



of a pre-trained network when probed by inputs from a
reference, “probe” dataset and (b) learning how to weight
the collected probe activations to perform various semantic
tasks. In this way, for every concept in the probe dataset,
a concept weight is learned for the task of recognizing that
concept. The resulting weights can then be interpreted as
concept embeddings and analyzed to understand how con-
cepts are encoded. For example, the performance on se-
mantic tasks when using learned concept weights that span
all filters in a layer can be compared to when using only a
single filter or subset of filters.

In the remainder of the section, we provide details for
how we learn concept embeddings by learning to segment
(3.1) and classify (3.2) concepts. We also outline how we
compare embeddings arising from using only a restricted
set of filters, including single filters. Before we do so, we
briefly discuss the dataset used to learn concepts.

Data. We build on the BRODEN dataset recently intro-
duced by [4] and use it to primarily probe AlexNet [9]
trained on the ImageNet dataset [16] as a representative
model for image classification. BRODEN contains over
60,000 images with pixel- and image-level annotations for
1197 concepts across 6 categories: scenes (468), objects
(584), parts (234), materials (32), textures (47), and col-
ors (11). We exclude 8 scene concepts for which there
were no validation examples. Thus, of the 1189 concepts
we consider, all had image-level annotations, but only 682
had segmentation annotations, as only image-level anno-
tations are provided for scene and texture concepts. Note
that our paradigm can be generalized to any probe dataset
that contains pixel- or image-level annotations for con-
cepts. To compare the effects of different architectures
and supervision, we also probe VGG16 [18] conv5 3 and
GoogLeNet [19] inception5b trained on ImageNet [16] and
Places365 [25] as well as conv5 of the following self-
supervised, AlexNet networks: tracking [21], audio [15],
objectcentric [5], moving [1], and egomotion [7]. Post-
ReLU activations are used.

3.1. Concept Segmentation

In this section, we show how learning to segment con-
cepts can be used to induce concept embeddings using ei-
ther all the filters available in a CNN layer or just a single
filter. We also show how embeddings can be used to quan-
tify the degree of overlap between filter combinations and
concepts. This task is performed on all 682 Broden con-
cepts with segmentation annotations, which excludes scene
and texture concepts.

3.1.1 Concept Segmentation by a Single Filter

We start by considering single filter segmentation follow-
ing [4]’s paradigm with three minor modifications, listed
below. For every filter k, let ak be its corresponding activa-
tion (at a given pixel location and for a given input image).
The τ = 0.005 activation’s quantile Tk is determined such
that P (ak > Tk) = τ , and is computed with respect to the
distribution p(ak) of filter activations over all probe images
and spatial locations; we use this cut-off point to match [4].

Filter k in layer l is used to generate a segmentation
of an image by first thresholding Ak(x) > Tk, where
Ak(x) ∈ RHl×Wl is the activation map of filter k on in-
put x ∈ RH×W×3 and upsampling the result as needed to
match the resolution of the ground truth segmentation mask
Lc(x), i.e. Mk(x) = S(Ak(x) > Tk), where S denotes a
bilinear upsampling function.

Images may contain any number of different concepts,
indexed by c. We use the symbol x ∈ Xc to denote the
probe images that contain concept c. To determine which
filter k best segments concept c, we compute a set IoU
score. This score is given by the formula

IoUset(c;Mk, s) =

∑
x∈Xs,c

|Mk(x) ∩ Lc(x)|∑
x∈Xs,c

|Mk(x) ∪ Lc(x)|
(1)

which computes the intersection over union (Jakkard in-
dex) difference between the binary segmentation masksMk

produced by the filter and the ground-truth segmentation
masks Lc. Note that sets are merged for all images in
the subset Xs,c of the data, where s ∈ {train, val}. The
best filter k∗(c) = argmaxk IoUset(c;Mk, train) is then
selected on the training set and the validation score IoU
IoUset(c;Mk∗ , val) is reported.

We differ from [4] in the following ways: (1) we thresh-
old before upsampling, in order to more evenly compare
to the method described below; (2) we bilinearly upsample
without anchoring interpolants at the center of filter recep-
tive fields to speed up the upsampling part of the experimen-
tal pipeline; and (3) we determine the best filter for a con-
cept on the training split Xtrain,c rather than Xc whereas [4]
does not distinguish a training and validation set.

3.1.2 Concept Segmentation by Filter Combinations

In order to compare single-feature concept embeddings to
representations that use filter combinations, we also learn
to solve the segmentation task using combinations of filters
extracted by the neural network. For this, we learn weights
w ∈ RK , where K is the number of filters in a layer, to
linearly combine thresholded activations. Then, the linear
combination is passed through the sigmoid function σ(z) =



1/(1+exp(−z)) to predict a segmentation maskM(x;w):

M(x;w) = σ

(∑

k

wk · I(Ak(x) > Tk)

)
(2)

where I(·) is the indicator function of an event. The sigmoid
is irrelevant for evaluation, for which we threshold the mask
predicted byM(x;w) by 1

2 , but has an effect in training the
weights w.

Similar to the single filter case, for each concept the
weights w are learned onXtrain,c and the set IoU score com-
puted on thresholded masks for Xval,c is reported. In addi-
tion to evaluating on the set IoU score, per-image IoU scores
are computed as well:

IoUind(x, c;M) =
|M(x) ∩ Lc(x)|
|M(x) ∪ Lc(x)|

(3)

Note that choosing a single filter is analogous to setting w
to a one-hot vector, where wk = 1 for the selected filter and
wk = 0 otherwise, recovering the single-filter segmenter
of section 3.1.1, with the output rescaled by the sigmoid
function (2).

Training For each concept c, the segmentation concept
weights w are learned using SGD with momentum (lr =
10−4, momentum γ = 0.9, batch size 64, 30 epochs) to
minimize a per-pixel binary cross entropy loss weighted by
the mean concept size, i.e. 1-α:

L1 = − 1

Ns,c

∑

x∈Xs,c

αM(x;w)Lc(x)

+ (1− α)(1−M(x;w)(1− Lc(x)), (4)

where Ns,c = |Xs,c|, s ∈ {train, val}, and α = 1 −∑
x∈Xtrain

|Lc(x)|/S, where |Lc(x)| is the number of fore-
ground pixels for concept c in the ground truth (g.t.) mask
for x and S = hs ·ws is the number of pixels in g.t. masks.

3.2. Concept Classification

As an alternate task to concept segmentation, the prob-
lem of classifying concept (i.e., to tell whether the concept
occurs somewhere in the image) can be used to induce con-
cept embeddings. In this case, we discuss first learning em-
beddings using generic filter combinations (3.2.1) and then
reducing those to only use a small subset of filters (3.2.2).

3.2.1 Concept Classification by Filter Combinations

Similar to our segmentation paradigm, for each concept c, a
weight vector w ∈ RK and a bias term b ∈ R are learned to
combine the spatially-averaged filter activations k; the lin-
ear combination is then passed through the sigmoid function

σ to obtain the concept posterior probability:

f(x;w, b) = σ

(
b+

∑

k

wk ·
∑Hl

i=1

∑Wl

j=1Aijk(x)

HlWl

)

(5)
where Hl and Wl denote the height and width respectively
of layer l’s activation map Ak(x).

For each concept c, the training imagesXtrain are divided
into the positive subset Xtrain,c+ of images that contain con-
cept c and its complement Xtrain,c− of images that do not.
While in general the positive and negative sets are unbal-
anced, during training, images from the two sets are sam-
pled with equal probability in order to re-balance the data
(supp. sec. 1.2). To evaluate performance, we calculate the
classification accuracy over a balanced validation set.

3.2.2 Concept Classification by a Subset of Filters

In order to compare using all filters in a layer to just a
subset of filters, or even individual filters, we must learn
corresponding concept classifiers. Following [2], for
each concept c, after learning weights w as explained
before, we choose the top F by their absolute weight |wk|.
Then, we learn new weights w′ ∈ RF and bias b′ that
are used to weight activations from only these F filters.
With respect to eq. (5), this is analogous to learning new
weights w′ ∈ RK , where w′k = 0 for all filters k that
are not the top F ones. We train such classifiers for F ∈
{1, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 80, 100, 128}
for the last three AlexNet layers and for all its layers for
the special case F = 1, corresponding to a single filter.
For comparison, we use this same method to select subsets
of filters for the segmentation task on the last layer using
F ∈ {1, 2, 4, 8, 16, 32, 64, 128, 160, 192, 224}.

4. Quantifying the Filter-Concept Overlap
4.1. Are Filters Sufficient Statistics for Concepts?

We start by investigating a popular hypothesis: whether
concepts are well represented by the activation of individual
filters or not. In order to quantify this, we consider how
our learned weights, which combine information from all
filter activations in a layer, compare to a single filter when
being used to perform segmentation and classification on
BRODEN.

Figure 2 shows that, on average, using learned weights
to combine filters outperforms using a single filter on both
the segmentation and classification tasks (sections 3.1.1
and 3.2.2) when being evaluated on validation data. The
improvements can be quite dramatic for some concepts and
starts in conv1. For instance, even for simple concepts like
colors, filter combinations outperform individual filters by
up to 4× (see supp. figs. 2-4 for graphs on the perfor-
mance of individual concepts). This suggests that, even if



Figure 2. Results by concept category on the segmentation (top)
and classification (bottom) tasks show that, on average, using
learned weights to combine filters (left) out performs using a sin-
gle filter (right). Standard error is shown.

filters specific to a concept can be found, these do not op-
timally encode or fully “overlap” with the concept. In line
with the accepted notion that deep layers improve represen-
tational quality, task performance generally improves as the
layer depth increases, with trends for the color concepts be-
ing the notable exception. Furthermore, the average perfor-
mance varies significantly by concept category and consis-
tently in both the single- and multi-filter classification plots
(bottom). This suggests that certain concepts are less well-
aligned via linear combination to the filter space.

How many filters are required to encode a concept? To
answer this question, we observe how varying the num-
ber of top conv5 filters, F , from which we learn concept
weights affects performance (section 3.2.2). Figure 3 shows
that mean performance saturates at different F for the var-
ious concept categories and tasks. For the classification
task (right), most concept categories saturate by F = 50;
however, scenes reaches near optimal performance around
F = 15, which is much more quickly than that of materials.
For the segmentation task (left), performance peaks much
earlier at F = 8 for materials and parts, F = 16 for ob-
jects, andF = 128 for colors. We also observe performance
drops after reaching optimal peaks for materials and parts in
the segmentation class. This highlights that the segmenta-
tion task is challenging for those concept categories in par-
ticular (i.e., object parts are much smaller and harder to seg-
ment, materials are most different from network’s original
ImageNet training examples of objects); with more filters
to optimize for, learning is more unstable and more likely
to reach a sub-optimal solution.

Failure Cases. While on average our multi-filter ap-
proach significantly outperforms a single-filter approach

Figure 3. Results by concept category and number of top conv5
filters used for segmentation and classification show that different
categories and tasks saturate in performance at different F .

Table 1. Percent of concepts for which the evaluation metric (set
IoU for segmentation and accuracy for classification) is equal to or
better when using learned weights than the best single filter.

conv1 conv2 conv3 conv4 conv5

Segmentation 91.6% 86.8% 84.0% 82.3% 75.7%

Classification 87.8% 90.2% 85.0% 87.9% 88.1%

on both segmentation and classification tasks (fig. 2), Ta-
ble 1 shows that for around 10% of concepts, this does not
hold. For segmentation, this percentage increases with layer
depth. Upon investigation, we discovered that the concepts
for which our learned weights do not outperform the best
filter either have very few examples for that concept, i.e.
mostly |Xtrain,c| ∈ [10, 100] which leads to overfitting; or
are very small objects, of average size less than 1% of an
image, and thus training with the size weighted (4) loss is
unstable and difficult, particularly at later layers where there
is low spatial resolution. A similar analysis on the classifi-
cation results shows that small concept dataset size is also
causing overfitting in failure cases: Of the 133 conv5 fail-
ure cases, 103 had at most 20 positive training examples
and all but one had less than 100 positive training examples
(supplementary material figs. 7 and 8).

4.2. Are Filters Shared between Concepts?

Next, we investigate the extent to which a single filter is
used to encode many concepts. Note that Figure 1 suggests
that a single filter might be activated by different concepts;
often, the different concepts a filter appears to be activated
by are related by a latent concept that may or may not be
human-interpretable, i.e., an ‘animal torso’ filter which also
is involved in characterizing animals like ‘sheep’, ‘cow’,
and ‘horse’ (fig. 4, supp. fig. 9).

Using the single best filters identified in both the seg-
mentation and classification tasks, we explore how often a
filter is selected as the best filter to encode a concept. Fig-
ure 5 shows the distribution of how many filters (y-axis)
encode how many concepts (x-axis). Interestingly, around
15% of conv1 filters (as well as several in all the other lay-
ers) were selected for encoding at least 20 and 30 concepts
(# of concepts / # of conv1 filters = 10.7 and 18.6; supp.



Figure 4. AlexNet conv5 filter 66 appears selective for pastoral an-
imal’s torso. Validation examples for ‘sheep’, ‘horse’, and ‘cow’
with the highest individual IOU scores are given (masks are up-
sampled before thresholding for visual smoothness).

Figure 5. For each filter in a layer, the number of concepts for
which it is selected as the best filter in the segmentation (left) and
classification (right) tasks is counted and binned.

tbl. 1) for the segmentation and classification tasks respec-
tively and a substantial portion of filters in each layer (ex-
cept conv1 for the segmentation task) are never selected.
The filters selected to encode numerous concepts are not
exclusively “overlapped” by a single concept. The filters
that were not selected to encode any concepts are likely not
be involved in detecting highly discriminative features.

4.3. More Architectures, Datasets, and Tasks

Figure 6 shows segmentation (top) and classification
(bottom) results when using AlexNet (AN) conv5, VGG16
(VGG) conv5 3, and GoogLeNet (GN) inception5b trained
on both ImageNet (IN) and Places365 (P) as well as conv5
of these self-supervised (SS), AlexNet networks: track-
ing, audio, objectcentric, moving, and egomotion. GN per-
formed worse than VGG because of its lower spatial resolu-
tion (7×7 vs. 14×14); GN-IN inception4e (14×14) outper-
forms VGG-IN conv5 3 (supp. fig. 11). In [4], GN detects
scenes well, which we exclude due to lack of segmentation
data. SS performance improves more than supervised net-
works (5-6x vs. 2-4x), suggesting that SS networks encode

Figure 6. Segmentation (top) and classification (bottom) results for
additional networks & datasets.

BRODEN concepts more distributedly.

5. Interpretability
In this section, we propose a new standard for visu-

alizing non-extreme examples, show how the single- and
multi-filter perspectives can be unified, and demonstrate
how viewing concept weights as embeddings in filter space
give us novel explanatory power.

5.1. Visualizing Non-Maximal Examples

Many visual explanation methods demonstrate their
value by showing visualizations of inputs that maximally
activate a filter, whether that be real, maximally-activating
image patches [22]; learned, generated maximally-activated
inputs [11, 14]; or filter segmentation masks for maximally-
activating images from a probe dataset [4].

While useful, these approaches fail to consider how vi-
sualizations differ across the distribution of examples. Fig-
ure 7 shows that using a single filter to segment concepts [4]
yields IoUind scores of 0 for many examples; such examples
are simply not considered by the set IoU metric. This of-
ten occurs because no activations survive the τ -thresholding
step, which suggests that a single filter does not consistently
fire strongly on a given concept.

We argue that a visualization technique should still work
on and be informative for non-maximal examples. In Fig-
ure 8, we automatically select and visualize examples at
each decile of the non-zero portion of the individual IoU
distribution (fig. 7) using both learned concept weights and
the best filters identified for each of the visualized cate-
gories. For ‘dog’ and ‘airplane’ visualizations using our
weighted combination method, the predicted masks are in-
formative and salient for most of the examples, even the
lowest 10th percentile (leftmost column). Ideally, using this
decile sampling method, the visualizations should appear
salient even for examples from lower deciles. However, for
examples using the best single filter (odd rows), the visual-
izations are not interpretable until higher deciles (rightmost



Figure 7. The empirical IoUind distribution when using the best
single filter and the learned weights for ‘dog’ (left) and ‘train’
(right) (µ, σ computed on the non-zero part of each distribution).

columns). This is in contrast to the visually appealing, max-
imally activating examples shown in supp. fig. 13.

5.2. Unifying Single- & Multi-Filter Views

Figure 9 highlights that single filter performance is of-
ten strongly, linearly correlated with the learned weights w,
thereby showing that individual filter performance is indica-
tive of how weighted it’d be in a linear filter combination.
Visually, a filter’s set IoU score appears correlated with
its associated weight value passed through a ReLU, i.e.,
max(wk, 0). For each of the 682 BRODEN segmentation
concepts and each AlexNet layer, we computed the correla-
tion between max(w, 0) and {IoUset(c;Mk, val)}k=1...K .
By conv3, around 80% of segmentation concepts are sig-
nificantly correlated (p < 0.01): conv1: 47.33%, conv2:
69.12%, conv3: 81.14%, conv4: 79.13%, conv5: 82.47%.
Thus, we show how the single filter perspective can be uni-
fied with and utilized to explain the distributive perspec-
tive: we can quantify how much a single filter k contributes
to concept c’s encoding from either |wk|

‖w‖1 where w is c’s

learned weight vector or IoUset(c;Mk∗ ,val)
IoUset(c;M(·;w),val) .

5.3. Explanatory Power via Concept Embeddings

Finally, the learned weights can be considered as em-
beddings, where each dimension corresponds to a filter.
Then, we can leverage the rich literature [12, 13, 8] on word
embeddings derived from textual data to better understand
which concepts are similar to each other in network space.
To our knowledge, this is the first work that learns seman-
tic embeddings aligned to the filter space of a network from
visual data alone. (For this section, concept weights are
normalized to be unit length, i.e., w′ = w

‖w‖ ).
Table 2 shows the five closest concepts in cosine dis-

tance, where 1 denotes that w′1 is 0◦ from w′2 and −1 de-
notes that w′1 is 180◦ from w′2. These examples suggest
that the embeddings from the segmentation and classifica-
tion tasks capture slightly different relationships between
concepts. Specifically, the nearby concepts in segmenta-
tion space appear to be similar-category objects (i.e., ani-
mals in the case of ‘cat’ and ‘horse’ being nearest to ‘dog’),

whereas the nearby concepts in classification space appear
to be concepts that are related compositionally (i.e., parts of
an object in the case of ‘muzzle’ and ‘paw’ being nearest to
‘dog’). Note that ‘street’ and ‘bedroom’ are categorized as
scenes and thus lack segmentation annotations.

Understanding the Embedding Space. Table 3 shows
that we can also do vector arithmetic by adding and sub-
tracting concept embeddings to get meaningful results.
For instance, we observe an analogy relationship between
‘grass’−‘green’ and ‘sky’−‘blue’ and other coherent re-
sults, such as non-green, ‘ground’-like concepts for ‘grass’
minus ‘green’ and floral concepts for ‘tree’ minus ‘wood’. t-
SNE visualizations and K-means clustering (see supp. table
2 and supp. figs. 16 and 17) also demonstrate that networks
learn meaningful, semantic relationships between concepts.

Comparing Embeddings from Different Learned Repre-
sentations. The learned embeddings extracted from indi-
vidual networks can be compared with one another quanti-
tatively (as well as to other semantic representations). Let
d(W ) : RC×K → RC×C = W ·WT compute the cosine
distance matrix for C concepts of a given representation
(e.g., AlexNet), whose normalized embeddings w′ form the
rows of W . Then, Di,j = ‖d(W i) − d(W j)‖22 quantifies
the distance between two embedding spaces W i,W j , and
Di,j,c = ‖d(W i)c−d(W j)c‖22 does that for concept c. Fig-
ure 10 (left) shows Di,j between 24 embedding spaces: 2
tasks× 11 network, WordNet (WN), and Word2Vec (W2V)
(C = 501, the number of BRODEN concepts available for
all embeddings; see supp. sec. 3.2.1). It shows that track-
ing and audio (T, A) classification embeddings are quite dif-
ferent from others, and that classification embeddings (-C)
are more aligned to WN and W2V than segmentation ones
(-S). Figure 10 (right) shows select mean Di,j,c distances
averaged over concept categories. It demonstrates that col-
ors are quite similar between WN and network embeddings
and that materials most differ between audio and the WN
and W2V embeddings.

6. Conclusion
We present a paradigm for learning concept embeddings

that are aligned to a CNN layer’s filter space. Not only do
we answer the binary questions, “does a single filter encode
a concept fully and exclusively?,” we also introduce the idea
of filter and concept “overlap” and outline methods for an-
swering the scalar extension questions, “to what extent...?”
We also propose a more fair standard for visualizing non-
extreme examples and show how to explain distributed con-
cept encodings via embeddings. While powerful and inter-
pretable, our approach is limited by its linear nature; future
work should explore non-linear ways concepts can be better



Figure 8. For the ‘dog’ and ‘airplane’ concepts, an example is automatically selected at each decile of the non-zero portion of the distribution
of individual IoU scores (Figure 7), and the predicted conv5 segmentation masks using the best filter (odd rows) as well as the learned
weights (even rows) are overlaid.

Table 2. Nearest concepts (in cos distance) using segmentation (left sub-columns) and classification (right) conv5 embeddings.
dog house wheel street bedroom

cat (0.81) muzzle (0.73) building (0.77) path (0.56) bicycle (0.86) headlight (0.66) n/a sidewalk (0.74) n/a headboard (0.90)
horse (0.73) paw (0.65) henhouse (0.62) dacha (0.54) motorbike (0.66) car (0.53) n/a streetlight (0.73) n/a bed (0.85)

muzzle (0.73) tail (0.52) balcony (0.56) hovel (0.54) carriage (0.54) bicycle (0.52) n/a license plate (0.73) n/a pillow (0.84)
ear (0.72) nose (0.47) bandstand (0.54) chimney (0.53) wheelchair (0.53) road (0.51) n/a traffic light (0.73) n/a footboard (0.82)
tail (0.72) torso (0.44) watchtower (0.52) earth (0.52) water wheel (0.48) license plate (0.49) n/a windshield (0.71) n/a shade (0.74)

Table 3. Vector arithmetic using segmentation, conv5 weights.
grass + blue − green grass − green tree − wood person − torso

sky (0.17) earth (0.22) plant (0.36) foot (0.12)

patio (0.10) path (0.21) flower (0.29) hand (0.10)

greenhouse (0.10) brown (0.18) brush (0.29) grass (0.09)

purple (0.09) sand (0.16) bush (0.28) mountn. pass (0.09)

water (0.09) patio (0.15) green (0.25) backpack (0.09)

Figure 9. Correlation between learned segmentation weights and
each filter’s set IoU score for ‘dog’ (left) and ‘airplane’ (right).

aligned to the filter space.
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Figure 10. Comparing Net2Vec embeddings quantitatively. Left:
Each cell corresponds to distanceDi,j for embedding spaces i and
j (see section 4.3 for abbreviations). Right: Each cell corresponds
to mean distance Di,j,c for each concept category.

References

[1] P. Agrawal, J. Carreira, and J. Malik. Learning to see by
moving. In ICCV, 2015.



[2] P. Agrawal, R. Girshick, and J. Malik. Analyzing the perfor-
mance of multilayer neural networks for object recognition.
In ECCV, 2014.

[3] G. Alain and Y. Bengio. Understanding intermedi-
ate layers using linear classifier probes. arXiv preprint
arXiv:1610.01644, 2016.

[4] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Net-
work dissection: Quantifying interpretability of deep visual
representations. In CVPR, 2017.

[5] R. Gao, D. Jayaraman, and K. Grauman. Object-centric rep-
resentation learning from unlabeled videos. In ACCV, 2016.

[6] A. Gonzalez-Garcia, D. Modolo, and V. Ferrari. Do semantic
parts emerge in convolutional neural networks? IJCV, 2016.

[7] D. Jayaraman and K. Grauman. Learning image representa-
tions tied to ego-motion. In ICCV, 2015.

[8] R. Kiros, R. Salakhutdinov, and R. S. Zemel. Unifying
visual-semantic embeddings with multimodal neural lan-
guage models. In TACL, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
classification with deep convolutional neural networks. In
NIPS, 2012.

[10] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S.
Corrado, J. Dean, and A. Y. Ng. Building high-level fea-
tures using large scale unsupervised learning. In Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2013.

[11] A. Mahendran and A. Vedaldi. Understanding deep image
representations by inverting them. In CVPR, 2015.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, 2013.

[13] T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities
in continuous space word representations. In NAACL-HLT,
2013.

[14] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and
J. Clune. Synthesizing the preferred inputs for neurons in
neural networks via deep generator networks. In NIPS,
2016.

[15] A. Owens, J. Wu, J. H. McDermott, W. T. Freeman, and
A. Torralba. Ambient sound provides supervision for visual
learning. In ECCV, 2016.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
IJCV, 115(3):211–252, 2015.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep in-
side convolutional networks: Visualising image classifica-
tion models and saliency maps. In ICLR workshop, 2014.

[18] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In CVPR, 2015.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In ICLR, 2014.

[21] J. Wang, Z. Zhang, C. Xie, V. Premachandran, and A. Yuille.
Unsupervised learning of object semantic parts from inter-
nal states of cnns by population encoding. arXiv preprint
arXiv:1511.06855, 2015.

[22] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. CoRR, 2013.

[23] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking generaliza-
tion. CoRR, 2016.

[24] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Object detectors emerge in deep scene cnns. In ICLR, 2015.

[25] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.
Places: An image database for deep scene understanding. T-
PAMI, 2016.



  
Statement of Authorship for joint/multi-authored papers for PGR thesis 

To appear at the end of each thesis chapter submitted as an article/paper 
  
 

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis 
publications. For each publication there should exist a complete statement that is to be filled out and signed by the 
candidate and supervisor (only required where there isn’t already a statement of contribution within the paper 
itself). 
 

  
 
Title of Paper 
 

 
Net2Vec: Quantifying and Explaining How Concepts Are Encoded by Filters in 

Deep Neural Networks 

 
Publication Status 
 
 
 

 
Published 

 
Publication Details 
 
 
 

 
Ruth Fong and Andrea Vedaldi. Net2Vec: Quantifying and Explaining How 

Concepts Are Encoded by Filters in Deep Neural Networks. In Proceedings of 

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2018. 

Student Confirmation 
 

 
Student Name: 
 

 
RUTH FONG 

 
Contribution to the 
Paper 
 

 
R.F. proposed the initial idea, developed it into a working algorithm, ran experiments, 

and generated figures. R.F. and A.V. designed research and wrote the paper text. 

 
 
 

 
Signature 
 
 

 
Date 

 
6 April 2020 

 

Supervisor Confirmation 

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the 
publication, and that the description described above is accurate. 
 

 
Supervisor name and title:    ANDREA VEDALDI 
 
 
 
Supervisor comments 
 
 
 
 
 
 
 
Signature 
 
 

 
Date 

 

 
 
This completed form should be included in the thesis, at the end of the relevant chapter.  



84



6
Interactive Similarity Overlays
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Interactive Similarity Overlays
An interactive tool for understanding what neural networks consider similar and different.

Hover over different parts of the above images. This interactive visualization shows how similar (or different) a

neural network considers different image patches to the current image patch (highlighted in yellow). Try hovering

over animal features (e.g., noses, eyes, faces) and background regions. 

This article is best viewed in Google Chrome.
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As digital technology has evolved over the past few decades, the ways we interact with it have also

evolved. We have moved from typing on a keyboard and viewing a terminal console, to using a mouse

and graphical user interface, to employing a variety of touchscreen gestures and voice commands.

However, despite the rapid progress in deep learning over the past few years , the ways we

interact with research artifacts have remained largely unchanged: most visualizations used in research

are non-responsive plots, images, and videos.

In this work, we formalize interactive similarity overlays — an interactive visualization that highlights

how a convolutional neural network (CNN) "sees" different image patches as similar or different. Our

method builds off of prior work on interactive visualizations for understanding CNNs

and self-similarity image descriptors . We also demonstrate how similarity overlays can be

combined with other visualization techniques, such as non-negative matrix factorization  and

interactive charts , to more richly explore the learned representations of CNNs. We design our

similarity overlays so that they can be easily extended or dropped into the existing workflow of a

machine learning researcher. To that end, we release a lightweight package that abstracts away the

web development aspects of the visualization; with it, researchers can easily generate similarity

overlays for any CNN with a Python interface (e.g., TensorFlow , PyTorch ).

Interactive similarity overlays allow a user to hover over an image patch and visualize how similar (or

different) other image patches are in a CNN representation (see right figure). More precisely, let 

 be a similarity function and let  be a

function that takes in an input image and returns a 3D tensor (i.e., a CNN up to layer ). Now, let 

 and let  denote the activation at the -th spatial location in . Then, we visualize the

similarity between a given spatial location  and every other location , which is given by 

. This yields a simple and intuitive visualization that allows for easy exploration of different

phenomena, which we explore in the rest of this article.

With this technique, we can compare similarities of spatial locations across images, as shown in the

splash figure above. Within this set of images, we notice that simple background scenes (e.g., those

for the dog and cat, flowers, and bird images) are similarly activated despite being visually different.

We also observe that a few features, such as eyes, are common across object classes (i.e., different

species). Taken together, these observations suggest that CNNs are capable of learning broad and

flexible semantic concepts.
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This multi-image example also highlights the main benefit of interactive similarity overlays, which is

their ability to allow users to digest a complex amount of data in an interpretable way. For  images,

the full scale of the similarities between all image patches is . By displaying

similarities interactively, we show  similarity scores at any given moment, thereby

making the data easier to digest.

In the rest of the article, we demonstrate the utility of our interactive similarity overlays in several case

studies.

Exploring Different Layers' Representations

First, we consider how interactive similarity overlays help us explore the representations of different

CNN layers.

Most prior works have explored layer representations from two perspectives: 1., by exploring how

representations in a layer corresponds with different kinds of semantic concepts (e.g.,

low-level concepts like colors and textures to high-level concepts like objects and scenes), and 2., by

visualizing the preferred stimuli of a neuron in specific layers (e.g., activation maximization )

or the stimuli that best correspond with a reference activation tensor (e.g., representation inversion

, caricatures ). The former approach typically requires access to manual annotations that

define semantic concepts; these are used to "test" a CNN representation and is limited by the breadth

and quality of annotation. The latter approach produces a static visualization that often trades off how

interpretable a visualization is with how accurately it explains a CNN. In contrast, our interactive

visualization similarity does not require manual annotations. Furthermore, thanks to its interactive

nature, our visualization accurately renders information about activation similarities in an interpretable

interface.

To compare representations of the same input image at different layers, we compute similarity scores

ithi h l d h i th ti l l ti b i l i d l (i th

Hover over image. The intensity of other

patches (lighter denotes more similar)

captures the similarity to the highlighted

image patch (in yellow).

N
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l
2

l
2
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[39, 40, 41, 42, 43]

[44, 45, 46]

[47] [48]

5



within each layer and synchronize the spatial location being explained across layers (i.e., the

highlighted image patch in yellow). Using this synchronization trick, we first explore the representation

of layers with different spatial resolutions. Consistent with some prior work, we find that the earlier

layers seem to capture lower-level features like edges while later layers tend to highlight higher-level,

semantic features like objects. We also notice that the representations of later layers appear more

smooth.

We also explore the representation of layers with the same spatial resolution. In this exploration, we

confirm our intuition that layer depth affects both the representational smoothness and semantic-

6

REPRODUCE IN A NOTEBOOK

Layers with different spatial resolutions.

The location of the highlighted image patch (in yellow) has been synchronized across images, such that the

overlays show similarity scores with respect to each image's highlighted patch (i.e., no similarity scores were

computed between images). Consider exploring edges in mixed3b layers and semantic features (e.g., objects and

object parts, like noses and eyes) in mixed4e and mixed5b layers.

mixed3b mixed4e

mixed5b

7



confirm our intuition that layer depth affects both the representational smoothness and semantic

ness.

REPRODUCE IN A NOTEBOOK

Mixed4 Layers.

Notice how the similarity overlays become progressively more smooth and semantic in what they capture as a

function of layer depth (i.e., compare similarity overlays across layers for the same spatial location).

mixed4a mixed4b

mixed4c mixed4d

mixed4e



Similarities Across Images

We can also use our visualization to explore representational similarities across images of the same

class. One interesting application is to compare correspondences between natural images and

generated ones. To that effect, we compute similarity scores across several images, including ones

generated to be classified as the same object class . We observe that there seem to be a few

correspondences (e.g., awareness of spatial position on an object, such as the handle vs. the nozzle of

a blow dryer).

To enhance our visualization and suggest a few corresponding features, we combined our similarity

overlays with another visualization tool: matrix factorization. Matrix factorization factors instances into

several groups which best explain the variation in a set. In the following example, we use matrix

factorization to group activation vectors at different spatial locations (and in different images) into

discrete groups. By combining these two visualization techniques together, we glean more

information about the CNN representations being visualized than if we were to use either technique

alone. Now, we are able to notice and confirm more interesting correspondences (e.g., the

correspondence to abstract strokes in a generated image, such as free black strokes corresponding to

cords in the blow dryer example).

[54] 8
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Comparison with generated images and matrix factors.





Sensitivity to Geometric Transformations

In a final example, we demonstrate how our interactive similarity overlays help us explore how sensitive

or invariant a representation is to geometric transformations (e.g., rotation, scale). By systematically

transforming an image (e.g., by fixed-degree rotation) and visualizing similarity scores across

transformed images, we can visually inspect the impact of a given transformation. We can also

combine our overlays with an interactive chart visualization.

In the rotation example, we show a line chart that displays the similarity scores of the highlighted

image patch as well as the corresponding patch in the other transformed images. By leveraging both

visualizations, we can quickly notice that more discriminative and oriented features (e.g., animal nose)

are more sensitive to rotation than more texture-based, background features (e.g., grass). We also

discover rotational sensitivity at image borders; this is likely an artifact from padding the boundaries

with zero padding.

By combining visualizations at different layers of abstraction (e.g., qualitative visualization of

similarities across all image patches vs. quantitative visualization of a subset of relevant patches), we

demonstrate the utility of combining techniques that operate at different levels of abstraction.

Hover over the large vertical black stroke in the generated image and notice how it appears to correspond to

electrical cords in the other images (e.g., the purple component). In one of the images, start hovering over the

nozzle opening move to the back of the blow dryer and down the handle. While doing this, notice similar

movements reflected in the overlays of other images.

10
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Rotate.



0 deg 45 deg

90 deg 135 deg

180 deg 225 deg

270 deg 315 deg



In the scale example, we observe that the spatial relationship of similarities between different features

are preserved across scales (e.g., moving a mouse around in one image generates similar

"movements" in other images). However, by plotting the similarity scores of the highlighted feature

across scales, we see more clearly and quantitatively that similarity scores are somewhat sensitive to

large scale changes. This seems to be true for both discriminative features and background ones,

though texture-based, background features may be less sensitive (e.g., background grass vs. cat

nose).

The line chart plots the similarity scores of the hightlighted image patch (e.g., score of 1 for highlighted patch in

yellow) and the corresponding patches in the other rotated images. Consider exploring discriminative and oriented

features (e.g., animal nose), background features (e.g., grass), and patches along or near the image border.

REPRODUCE IN A NOTEBOOK

Scale.

1x 2.5x

4.6x 7.4x



The line chart plots the similarity scores of the highlighted image patch (e.g., score of 1) and the corresponding

patches in the other scale-transformed images, if they exist. Consider exploring discriminative features in contrast

to background features (e.g., grass vs. cat foreground in 14.9x image).

10.8x 14.9x

19.6x 25x



Conclusion

In summary, we introduce a simple interactive visualization , interactive similarity overlays, which allow

a user to investigate the representational similarity of various images. Thanks to its interactive nature,

our visualization is both interpretable and faithful to the model being explained. We highlighted how

our visualization enables the exploration of a few CNN properties as well as how it can be thoughtfully

combined with other techniques to yield further insights.

With a recent movement towards supporting deep learning in Javascript  and machine learning

research articles with interactive figures , we eagerly expect further work on interactive

visualizations for understanding CNNs that can be easily combined with existing tools. To that end,

we also release a small package that allows anyone to easily use our interactive similarity overlays

without needing to know Javascript. We hope more work is done to empower machine learning

practitioners and researchers to easily explore the behavior of their models.

[55, 56]
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Additional
Resources

Code: ruthcfong/interactive_overlay

Open-source implementation of our techniques on GitHub.

Notebooks:

Direct links to ipynb notebooks corresponding to the respective sections of this paper.

Basic Examples (TensorFlow)

Class Similarities & Perceptual Engines (TensorFlow)

Geometric Transformations (TensorFlow)

Further Notebook:

Direct link to an ipynb notebook demonstrating how to use our interactive similarity overlays in other applications using

PyTorch.

Comparing Architectures and Supervision (PyTorch)
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Footnotes

�. See  for a survey of visualizations for machine learning and deep learning respectively. [↩]

�. A number of works use interactivity to navigate a visual interface , focus on visualizing a single model or dataset

deeply for pedogogical purposes , treat a model as a black-box by visualizing model inputs and

outputs (not internal components) , and/or explore other kinds of models or feature representations (e.g., GANs

, RNNs , etc. ). In contrast, our work is an interactive visualization that can be used to

explain the internal representation of any CNN model. [↩]

�. github.com/ruthcfong/interactive_overlay [↩]

�. Unless otherwise stated, we use the cosine similarity function, , and GoogLeNet's  mixed4d layer as 

. We chose the cosine similarity function because it is the noramlized dot product of two vectors, which quantifies

the angle between them (i.e., it captures the directional similarity of two vectors). [↩]

�. In the case of feature visualizations, interpretability refers to how easily interpretable a visualization is (e.g., some feature

visualizations are highly unnatural and are hard to reason about), while fidelity refers to how accurately a visualization

explains a given model component (e.g., neuron or activation tensor; some feature visualizations rely on strong priors

 in order to be more interpretable by trading off fidelity). Refer to  for a discussion of this tradeoff.

[↩]

�. Neighboring spatial locations possess similar scores in smooth representations. [↩]

� That is layers that output tensors of the same spatial dimensions (i e and ) [↩]
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[13, 14]

[15, 16, 17, 18, 19, 20, 21, 22]

[23, 24, 14]

[25, 21, 26] [27, 28, 22] [29, 30, 15, 31]

s(a,b) =  ∥a∥∥b∥
a⋅b [38]

f  (x)l

[49, 50, 51, 52, 53] [46]

Hl Wl



References

�. ImageNet Classification with Deep Convolutional Neural Networks [PDF]

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Proceedings of the 25th International Conference on Neural

Information Processing Systems (NIPS).

�. Mask R-CNN [PDF]

He, K., Gkioxari, G., Dollar, P. and Girshick, R., 2017. Proceedings of the IEEE International Conference on Computer

Vision (ICCV).

�. Mastering the game of Go without human knowledge [link]

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. and

others,, 2017. Nature, Vol 550(7676), pp. 354--359. Nature Publishing Group.

�. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [link]

Devlin, J., Chang, M., Lee, K. and Toutanova, K., 2018. arXiv preprint arXiv:1810.04805.

�. Understanding Neural Networks Through Deep Visualization [link]

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. and Lipson, H., 2015. Deep Learning Workshop, International Conference on

Machine Learning (ICML).

�. A Neural Network Playground [link]

Tensorflow, P., 2017.

�. The Building Blocks of Interpretability [link]

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye, K. and Mordvintsev, A., 2018. Distill, Vol 3(3), pp. e10.

�. Exploring Neural Networks with Activation Atlases [link]

Carter, S., Armstrong, Z., Schubert, L., Johnson, I. and Olah, C., 2019. Distill, Vol 4(3), pp. e15.

�. Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations [link]

Hohman, F., Park, H., Robinson, C. and Chau, D.H., 2020. IEEE Transactions on Visualization and Computer Graphics

(TVCG). IEEE.

��. Understanding and Visualizing Data Iteration in Machine Learning [PDF]

Hohman, F., Wongsuphasawat, K., Kery, M.B. and Patel, K., 2020. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems.

�� What you see is what you can change: Human-centered machine learning by interactive visualization [link]

�. That is, layers that output tensors of the same spatial dimensions (i.e.,  and ). [↩]

�. These generated images were constrained by brush strokes and inks to appear like modern art. See  for more details

about their generation process (the prints are available for purchase here). [↩]

�. See "Implementation Details" at the end of the article for more information about how this figure was generated. [↩]

��. Highlight a boundary pixel and move inward towards the center of the image; you will notice that the ripple effect in

similarity scores shown in the line chart becomes smaller as your cursor moves towards the image center. Due to large

receptive fields, patches in between the image border and center may still be partially affected by boundary effects. [↩]

��. See  for further discussion on the benefits of combining multiple layers of abstraction. [↩]

��. Currently, there are a few open-source packages (e.g., TensorFlow's Lucid and PyTorch's Captum) that implement

several CNN visualization methods and support combining techniques. [↩]

��. github.com/ruthcfong/interactive_overlay [↩]

H  l W  l

[54]

[36]



��. What you see is what you can change: Human centered machine learning by interactive visualization [link]

Sacha, D., Sedlmair, M., Zhang, L., Lee, J.A., Peltonen, J., Weiskopf, D., North, S.C. and Keim, D.A., 2017.

Neurocomputing, Vol 268, pp. 164--175. Elsevier.

��. Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers [PDF]

Hohman, F., Kahng, M., Pienta, R. and Chau, D.H., 2018. IEEE Transactions on Visualization and Computer Graphics

(TVCG). IEEE.

��. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems [PDF]

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., J{\'{o}}zefowicz, R., Kaiser, L., Kudlur, M., Levenberg,

J., Man{\'{e}}, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar,

K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Vi{\'{e}}gas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.

and Zheng, X., 2016. arXiv preprint arXiv:1603.04467.

��. The What-If Tool: Interactive Probing of Machine Learning Models [link]

Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viegas, F. and Wilson, J., 2019. IEEE Transactions on

Visualization and Computer Graphics (TVCG), Vol 26(1), pp. 56--65. IEEE.

��. How to Use t-SNE Effectively [link]

Wattenberg, M., Viegas, F. and Johnson, I., 2016. Distill, Vol 1(10), pp. e2.

��. Four Experiments in Handwriting with a Neural Network [link]

Carter, S., Ha, D., Johnson, I. and Olah, C., 2016. Distill, Vol 1(12), pp. e4.

��. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation [PDF]

Hohman, F., Hodas, N. and Chau, D.H., 2017. Proceedings of the 2017 CHI Conference Extended Abstracts on Human

Factors in Computing Systems. ACM.

��. DrawNet [link]

Torralba, A., 2017.

��. Direct-Manipulation Visualization of Deep Networks [PDF]

Smilkov, D., Carter, S., Sculley, D., Viegas, F.B. and Wattenberg, M., 2017. arXiv preprint arXiv:1708.03788.

��. Adversarial-Playground: A Visualization Suite Showing How Adversarial Examples Fool Deep Learning [PDF]

Norton, A.P. and Qi, Y., 2017. 2017 IEEE Symposium on Visualization for Cyber Security (VizSec), pp. 1--4.

��. GAN Lab: Understanding Complex Deep Generative Models using Interactive Visual Experimentation [link]

Kahng, M., Thorat, N., Chau, D.H.P., Viegas, F.B. and Wattenberg, M., 2018. IEEE Transactions on Visualization and

Computer Graphics (TVCG), Vol 25(1), pp. 1--11. IEEE.

��. Visualizing memorization in RNNs [link]

Madsen, A., 2019. Distill, Vol 4(3), pp. e16.

��. Now anyone can explore machine learning, no coding required [link]

Webster, B., 2017.

��. Facets - Visualizations for ML Datasets [link]

PAIR, G., 2017.

��. Generative Visual Manipulation on the Natural Image Manifold [link]

Zhu, J., Krahenbuhl, P., Shechtman, E. and Efros, A.A., 2016. Proceedings of European Conference on Computer Vision

(ECCV).

��. Semantic Photo Manipulation with a Generative Image Prior [link]

Bau D Strobelt H Peebles W Wulff J Zhou B Zhu J and Torralba A 2019 ACM Transactions on Graphics



Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J. and Torralba, A., 2019. ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH), Vol 38(4).

��. LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks [link]

Strobelt, H., Gehrmann, S., Pfister, H. and Rush, A.M., 2017. IEEE Transactions on Visualization and Computer Graphics

(TVCG), Vol 24(1), pp. 667--676. IEEE.

��. Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models [link]

Strobelt, H., Gehrmann, S., Behrisch, M., Perer, A., Pfister, H. and Rush, A.M., 2018. IEEE Transactions on Visualization

and Computer Graphics (TVCG), Vol 25(1), pp. 353--363. IEEE.

��. EnsembleMatrix: Interactive Visualization to Support Machine Learning with Multiple Classifiers [PDF]

Talbot, J., Lee, B., Kapoor, A. and Tan, D.S., 2009. Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, pp. 1283--1292.

��. Visualizing MNIST: An Exploration of Dimensionality Reduction, 2014 [link]

Olah, C..

��. Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning Models [link]

Hohman, F., Head, A., Caruana, R., DeLine, R. and Drucker, S.M., 2019. Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems.

��. Matching Local Self-Similarities across Images and Videos [link]

Shechtman, E. and Irani, M., 2007. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

��. Global and Efficient Self-Similarity for Object Classification and Detection [PDF]

Deselaers, T. and Ferrari, V., 2010. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

��. Static and space-time visual saliency detection by self-resemblance [link]

Seo, H.J. and Milanfar, P., 2009. Journal of vision, Vol 9(12), pp. 15--15. The Association for Research in Vision and

Ophthalmology.

��. Multiple Kernels for Object Detection [PDF]

Vedaldi, A., Gulshan, V., Varma, M. and Zisserman, A., 2009. Proceedings of the IEEE International Conference on

Computer Vision (ICCV).

��. Up and Down the Ladder of Abstraction: A Systematic Approach to Interactive Visualization [link]

Victor, B., 2011.

��. Automatic differentiation in PyTorch [link]

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L. and Lerer, A., 2017.

Proceedings of the Neural Information Processing Systems (NIPS).

��. Going Deeper with Convolutions [PDF]

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. and Rabinovich, A., 2015.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

��. Analyzing the Performance of Multilayer Neural Networks for Object Recognition [link]

Agrawal, P., Girshick, R. and Malik, J., 2014. Proceedings of the European Conference on Computer Vision.

��. Object Detectors Emerge in Deep Scene CNNs [PDF]

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A., 2015. Proceedings of the International Conference on

Learning Representations (ICLR).

��. Do Semantic Parts Emerge in Convolutional Neural Networks? [link]

Gonzalez-Garcia A Modolo D and Ferrari V 2018 International Journal of Computer Vision (IJCV) Vol 126(5) pp



Gonzalez Garcia, A., Modolo, D. and Ferrari, V., 2018. International Journal of Computer Vision (IJCV), Vol 126(5), pp.

476--494. Springer.

��. Network Dissection: Quantifying Interpretability of Deep Visual Representations [link]

Bau, D., Zhou, B., Khosla, A., Oliva, A. and Torralba, A., 2017. Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR).

��. Net2Vec: Quantifying and Explaining How Concepts Are Encoded by Filters in Deep Neural Networks [PDF]

Fong, R. and Vedaldi, A., 2018. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

��. Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps [link]

Simonyan, K., Vedaldi, A. and Zisserman, A., 2014. Proceedings of the Workshop at the International Conference on

Learning Representations (ICLR).

��. Visualizing and Understanding Convolutional Networks [PDF]

Zeiler, M.D. and Fergus, R., 2014. Proceedings of the European Conference on Computer Vision (ECCV).

��. Feature Visualization [link]

Olah, C., Mordvintsev, A. and Schubert, L., 2017. Distill, Vol 2(11), pp. e7.

��. Understanding Deep Image Representations by Inverting Them [PDF]

Mahendran, A. and Vedaldi, A., 2015. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

��. Inceptionism: Going deeper into neural networks [HTML]

Mordvintsev, A., Olah, C. and Tyka, M., 2015. Google Research Blog. Retrieved June, Vol 20(14), pp. 5.

��. Generating Images with Perceptual Similarity Metrics based on Deep Networks [link]

Dosovitskiy, A. and Brox, T., 2016. Proceedings of the International Conference on Neural Information Processing

Systems (NIPS).

��. Synthesizing the preferred inputs for neurons in neural networks via deep generator networks [link]

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T. and Clune, J., 2016. Proceedings of the International Conference on

Neural Information Processing Systems (NIPS).

��. Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space [link]

Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A. and Yosinski, J., 2017. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).

��. Deep Image Prior [link]

Ulyanov, D., Vedaldi, A. and Lempitsky, V.S., 2018. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

��. Differentiable Image Parameterizations [link]

Mordvintsev, A., Pezzotti, N., Schubert, L. and Olah, C., 2018. Distill, Vol 3(7), pp. e12.

��. Shared Visual Abstractions [PDF]

White, T., 2019. Proceedings of the NeurIPS Workshop on Shared Visual Representations in Human and Machine

Intelligence (SVRHM).

��. Tensorflow. js: Machine learning for the web and beyond [PDF]

Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu, P., Zhang, K., Cai, S., Nielsen, E., Soergel, D. and others,,

2019. arXiv preprint arXiv:1901.05350.

��. Magenta.js: A JavaScript API for Augmenting Creativity with Deep Learning [PDF]

Roberts, A., Hawthorne, C. and Simon, I., 2018. Joint Workshop on Machine Learning for Music (ICML).

��. Machine Learning Should Be Clear, Dynamic and Vivid. Distill is Here to Help. [link]



.

��. Do neural networks show Gestalt phenomena? An exploration of the law of closure [PDF]

Kim, B., Reif, E., Wattenberg, M. and Bengio, S., 2019. arXiv preprint arXiv:1903.01069.

��. ImageNet Large Scale Visual Recognition Challenge [link]

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M. and

others,, 2015. International journal of computer vision, Vol 115(3), pp. 211--252. Springer.

Citation

For attribution in academic contexts, please cite this work as

Fong et al., "Interactive Similarity Overlays", VISxAI 2021. Retrieved from 
https://ruthcfong.github.io/projects/interactive_overlay/

BibTeX citation

@InProceedings{fong_interactive_2021, 
  author={Fong, Ruth and Mordvintsev, Alexander and Vedaldi, Andrea and Olah, Chris}, 
  title={Interactive Similarity Overlays}, 
  booktitle={VISxAI}, 
  year={2021}, 
  url={https://ruthcfong.github.io/projects/interactive_overlay/}, 
}



104



7
Discussion

Contents
7.1 Attribution heatmaps . . . . . . . . . . . . . . . . . . . . 106

7.1.1 Extensions of meaningful perturbations (Fong et al., 2017)106
7.1.2 Related independent work to extremal perturbations

(Fong et al., 2019a) . . . . . . . . . . . . . . . . . . . . . 107
7.1.3 Discussion on metrics and attribution method design . . 107
7.1.4 TorchRay: a package for reproducible research . . . . . 110
7.1.5 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 Concept vectors . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.1 Related independent work to Net2Vec (Fong et al., 2018b)112
7.2.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Interactive visualizations . . . . . . . . . . . . . . . . . . 114
7.4 Interpretability research . . . . . . . . . . . . . . . . . . 115

7.4.1 Moving beyond image classifiers . . . . . . . . . . . . . 116
7.4.2 “Interpretable-by-design” . . . . . . . . . . . . . . . . . 117
7.4.3 Model debugging . . . . . . . . . . . . . . . . . . . . . . 117
7.4.4 Intrepretability metrics . . . . . . . . . . . . . . . . . . 118
7.4.5 Interpretability tools for practitioners . . . . . . . . . . 119

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 119

In this section, we discuss the impact of the work presented in the earlier
chapters. For each research area, we discuss the impact of our research in relation
to other works that build off our work (i.e. extensions), are in close dialogue with
our research (i.e. related works), and are quite similar to ours (i.e. independent
discoveries). We then outline a few promising future directions that have not yet
been explored: some related to the works presented in this thesis as well as a few
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under-explored directions in the interpretability research space (section 7.4). Finally,
we summarize the main contributions of this thesis in section 7.5.

This chapter can be seen as a continuation of chapter 2, which surveyed related
works that generally preceded ours. Together, both chapters serve to illustrate
that research rarely happens in a vacuum but is often the product of interacting
with, responding to, and being inspired by many other related works. In this
chapter, we aim to shed some light on some ongoing discussions (both formally
via research papers and informally via conversation) among researchers working
on CNN interpretability. We also hope that this chapter highlights that there is
much more work to be done in terms of increasing our understanding of CNNs
and outlines a few ideas to that effect.

7.1 Attribution heatmaps

7.1.1 Extensions of meaningful perturbations (Fong et al.,
2017)

Building off meaningful perturbations (Fong et al., 2017), Dabkowski et al., 2017
train a segmentation network to predict masks similar to those produced by Fong
et al., 2017 in order to produce attribution heatmaps in real-time (a.k.a. real-time
saliency). While Dabkowski et al., 2017 indeed yields a significant computational
speedup, the use of a trained network limits its ability to produce explanations
for instances outside the training domain of the network. Dabkowski et al., 2017
also formalize the notions of the smallest sufficient region (SSR) and the smallest
destroying region (SDR), which respectively connote the smallest region that, when
shown to an image classifier, is sufficient for correct prediction and the smallest
region that, when its component is shown to an image classifier, is sufficient for
misclassification. Greydanus et al., 2018 also extend meaningful perturbations to
visually explain the policy decisions of deep reinforcement learning agents playing
Atari games. Chang et al., 2017 extend Fong et al., 2017 by learning to generate
a mask distribution (rather than a single mask) as well as generating the value
of replacement pixels (rather than simply blurring them). While mathematically
interesting, Chang et al., 2017 do not demonstrate their Variational Dropout
Saliency Map (VDSM) on complex, real-world datasets; instead, they show results
on the MNIST dataset (LeCun et al., 2010). Similarly, Chang et al., 2019 explore
learning counterfactual explanations by using a generative model to fill in masked
regions instead of blurring them as was done in Fong et al., 2017; they argue that
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this encourages the produced explanation to be more realistic and comparable
to samples from the training distribution.

7.1.2 Related independent work to extremal perturbations
(Fong et al., 2019a)

XRAI (Kapishnikov et al., 2019) independently introduce a perturbation-based
saliency technique with a few similar qualities to our extremal perturbations
work (Fong et al., 2019a). Like extremal perturbations, XRAI learns area-constrained
attribution heatmaps. However, while extremal perturbations allows for free-form,
smooth heatmaps to be learned, XRAI constrains the space of possible attribution
heatmaps to superpixels computed from low-level image features (e.g. edges). This
constraint is likely imposed in order to limit the potential for XRAI to learn an
adversarial mask (see Fong et al., 2017 in chapter 3 for a discussion on adversarial
artifacts). Furthermore, while extremal perturbations learns an attribution mask
via optimization, XRAI finds one via a greedy algorithm1 that successively adds
superpixels to a work-in-progress attribution mask until the area budget is used
up. Because of these differences, we argue that our extremal perturbations method
is preferable because it learns an attribution heatmap by dynamically considering
a wide range of free-form, smooth masks.

7.1.3 Discussion on metrics and attribution method design

In meaningful perturbations (Fong et al., 2017) (as well as in an extended book
chapter (Fong et al., 2019b)), we discuss the need for attribution methods and
evaluation metrics to be carefully designed to truly understand what regions are
responsible for a particular model’s decision.

In Fong et al., 2017, we outline several desiderata for explanation-producing
systems (and by extension their evaluation metrics), with a particular focus on
attribution heatmaps. Specifically, we highlight the need for an explanation to be
both faithful2 to and maximally informative3 (i.e. meaningful) about the model
being explained.

1A greedy algorithm is one that selects the best local choice (i.e. best option at that time) at
each step in the algorithm. Unless proven, greedy algorithms typically do not learn the globally
optimal (i.e. overall best) solution (Black, 2005). See the Wikipedia article on “Greedy algorithm”
for more details.

2To be faithful to a model is to provide an accurate explanation of its behavior.
3To be maximally informative about a model is to provide the most useful or meaningful

information about a certain aspect of its behavior.

https://en.wikipedia.org/wiki/Greedy_algorithm
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To ensure that an attribution heatmap is a faithful explanation, we highlight
the superiority of saliency methods that are testable or falsifiable in Fong et al.,
2019b. Our meaningful perturbations and extremal perturbations methods are
inherently falsifiable: the produced explanation mask is meant to either maximally
destroy or maximally preserve a model’s class prediction when used to perturb
an image. This explanation can be easily tested as well as compared to other
potential regions. A number of propagation-based methods are not testable by
design because they typically are based on propagating and visualizing a signal
through many CNN layers. Because of this, the meaning of that signal and the
highlighted regions from the resultant heatmap is often unclear (e.g. what does
it mean that a specific region is highlighted?).

This does not imply that that there is not a clear interpretation to an attribution
method. For example, the gradient method (Simonyan et al., 2014) has a clear
interpretation: it visualizes the gradient of a model’s output with respect to its
input. However, a clear interpretation of a method does not ensure that produced
heatmaps are falsifiable or even faithful. For instance, the gradient is not necessarily
a faithful explanation of a model’s behavior on a specific input.4

In contrast, the meaning of highlighted regions in perturbation-based attribution
heatmaps — e.g. occlusion (Zeiler et al., 2014), RISE (Petsiuk et al., 2018) — is
arguably more clear because they are grounded in real-world edits to an image: a
highlighted region means that perturbing the input there will affect the model’s
output prediction in some way. Our meaningful and extremal perturbation masks go
a step further and by design highlight the regions that are most critical to a model’s
output prediction. Furthermore, our extremal perturbation masks are relatively
more informative: by visualizing a series of area constrained masks, we show a
ranking of regions and quantify their importance to the output prediction. We
hope that further work on attribution heatmaps considers these criteria when
designing future methods.

In addition to attribution method design, metrics for evaluating attribution
techniques should also be faithful and informative. The earliest metrics for evaluating
attribution heatmaps were based on evaluating performance on other computer
vision tasks such as weak localization — e.g. the pointing game (J. Zhang et al.,
2018). These metrics evaluate the quality of heatmaps based on how useful they
are at identifying where an object is located in an image. While this is a useful
task, it is an insufficient metric for measuring attribution quality; in particular, it

4The gradient of the linear model y = Wx + b with respect to input x is the weights matrix
W; this is independent to the specific input x being explained.
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can inadvertently penalize faithful attribution methods. Consider a model that
has learned an incorrect but highly predictive correlation from the training data
— e.g. “dumbbells” typically have “arms” in them (Mordvintsev et al., 2015). A
perfectly faithful attribution method, when applied to such a biased model, might
highlight regions containing “arms” when explaining the presence of “dumbbells” in
a given image. Although such a method provides a perfectly accurate explanation
of model behavior, it would be penalized in a weak localization task for not
correctly highlighting “dumbbells.” This example demonstrates the limitation of
weak localization metrics to properly account for the fidelity of explanations when
evaluating attribution methods. A number of other works have also highlighted
this issue (Mordvintsev et al., 2015; Ribeiro et al., 2016; Lapuschkin et al., 2016;
Kindermans et al., 2019; Lapuschkin et al., 2019).

One metric that does properly account for fidelity of explanations is the deletion
game. Variants of it have been introduced over the past few years (Bach et al., 2015;
Petsiuk et al., 2018; Kapishnikov et al., 2019). The main idea behind this metric is
that pixels or regions are ranked in order of importance by an attribution heatmap.
Then, these regions are iteratively deleted and the impact of the deletion is quantified,
typically as the impact on classification accuracy (Bach et al., 2015; Petsiuk et al.,
2018) or on image entropy (Kapishnikov et al., 2019).5 However, this metric can be
biased towards certain kinds of methods, such as techniques that generate highly
pixelated visualizations6 as well as methods like XRAI that follow a similar paradigm
in their method design (i.e. a greedy algorithm for deleting or preserving regions).

Recently, several “sanity check” metrics have been introduced to better quantify
the faithfulness of an attribution method. The constant shift test (Kindermans
et al., 2019) checks whether a constant shift of all pixels in the input image,
which does not affect a model’s predictive ability, similarly does not affect an
attribution method’s produced heatmap. This check ensures that an attribution
method is not sensitive to changes that do not affect model behavior. Another
set of three tests check if an attribution method is sensitive (i.e. faithful) to the
model, data distribution, and output class respectively being explained. The
model parameter randomization test (Adebayo et al., 2018) checks whether
randomizing a model’s parameters affects an attribution method’s produced heatmap.
The data randomization test (Adebayo et al., 2018) checks whether randomly

5Another variant iteratively adds regions back to an image.
6As noted in (Kapishnikov et al., 2019), this is because a highly pixelated heatmap can span

a larger region using the same number of pixels. Furthermore, deleting disjointed patches as is
typically done can yield unnaturalistic artifacts that can also confound classification accuracy.
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permuting the training labels affects attribution. Lastly, our own class sensitivity
test (Rebuffi et al., 2020) (see appendix C.2) checks whether randomly permuting the
output class being explained affects an attribution heatmap. These metrics should
be viewed as unit tests for attribution methods; they do not positively evaluate
attribution quality but rather test against the presence of undesirable qualities.

7.1.4 TorchRay: a package for reproducible research

The above discussion shows that there is ample room to further develop desiderata,
“unit test”-like sanity checks, and further metrics to evaluate attribution quality.
One of the barriers to this research development was an inability to easily reproduce
other attribution methods and metrics. To that end, in collaboration with Facebook
Research, we have developed and open-sourced the TorchRay package, which,
in its initial release, implements a number of attribution methods (as well as a
growing number of metrics) in such a way as to support reproducible research.
Although a few similar packages exist (i.e. Captum7 for PyTorch and saliency8 for
TensorFlow), they tend to be developed without benchmarking in mind (i.e. to
simply generate attribution heatmaps).

Hopefully, TorchRay encourages more rigorous and reproducible research in the
future.

7.1.5 Future work

In addition to further developing “unit test”-like sanity checks and benchmarks for
assessing the quality of attribution heatmaps, there are a number of other promising
future directions that follow naturally from our work (Fong et al., 2017; Fong et al.,
2019a) as well as more broadly from the current state of attribution work.

The first is to extend our perturbations framework and combine it with other
techniques to explain every component of a model. Most attribution methods
for CNNs focus on the problem of spatial attribution, which is concerned with
explaining what spatial regions are responsible for a model’s prediction. In our
works, we are primarily concerned with tackling the spatial attribution problem
by perturbing the input image. That said, more work could be done with respect
to spatial attribution at intermediate layers; this would allow us to study how
information is filtered through the network.9

7https://github.com/pytorch/captum
8https://github.com/PAIR-code/saliency
9We explore the problem of spatial attribution at intermediate layers in Rebuffi et al., 2020,

where we primarily focus on propagation-based attribution techniques.

https://github.com/facebookresearch/TorchRay
https://github.com/pytorch/captum
https://github.com/PAIR-code/saliency
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In Fong et al., 2019a, we extend our perturbations framework to the problem
of channel attribution, which is concerned with explaining which channels are
responsible for a model’s prediction. There, we attribute the channels after one
layer in a network. However, our work could be extended to learn a series of channel
attributions at various points throughout the network and thus combine channel
attribution with pathway attribution, which is concerned with explaining which
locations in a network (i.e. layers) are responsible for a model’s prediction. Fur-
thermore, we could also extend our perturbations framework to the under-explored
problem of weights attribution, in which we highlight which network parameters
are responsible for a model’s decision. Such work could then be paired with recent
work on visualizing the internal components of a model (Olah et al., 2020).

One of the challenges we faced in Fong et al., 2019a was making channel
attributions interpretable. Unlike spatial attribution methods, which produce a
heatmap that can be overlaid the input image, attribution of internal network
components does not yield an intrinsically interpretable artifact. We visualize
our channel attribution mask by generating a corresponding CAM/Grad-CAM-
like (Zhou et al., 2016a; Selvaraju et al., 2017) spatial heatmap as well as a feature
visualization (Olah et al., 2017) that highlighted the preferred stimuli of the channels
in the attribution mask. That said, more work can and should be done to develop
visualization tools for non-spatial attribution. Olah et al., 2018 make a relevant
suggestion when they highlight the need for interpretability tools to be easily
combined together like “building blocks.” In the case on non-spatial attribution,
more visualization “building blocks” are needed.

The second is to expand the type of perturbations we explore. In our work,
we primarily explore the effects of spatial occlusions in images by replacing pixels
with a reference signal (i.e. a blurred, randomly generated, or constant value pixel).
However, there are many other image perturbations (e.g. scaling, cropping, warping)
that can be used to tackle the attribution problem; many of these have been used
for other computer vision applications such as self-supervised learning (Thewlis
et al., 2017; Gidaris et al., 2018). Similar to the problem we faced when tackling
channel attribution, one of the challenges when considering using these kinds of
image transformations for attribution is how to render from them an interpretable
and faithful explanation.10 Thus, there is also ample opportunity to either explore
novel interfaces or adapt existing ones (e.g. heatmaps) to explain effects of other
perturbations. In our work on attributing channels (Fong et al., 2019a), we use a

10Spatial occlusions naturally translate well into a heatmap visualization.
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constant value (i.e. 0) as a reference signal to perturb channels. Other reference
signals should also be considered (or even generated, i.e. in a fashion similar to Chang
et al., 2017; Chang et al., 2019). Often, the exploration of the reference signals (as
done in Sturmfels et al., 2020) is itself quite fruitful for understanding CNNs.

The third is to leverage perturbations to novel problems. For instance, our
perturbations framework could be extended to the problem of uncertainty estima-
tion, which is concerned with quantifying the amount of uncertainty in a given
measurement.11 This can be done by applying perturbations to an input to a CNN
and learning a distribution that best explains the observed output.12,13 Another
application of perturbations is to learn about global properties of a network. Morcos
et al., 2018 and Zhou et al., 2018c can both be seen as using perturbations to ablate
individual CNN hidden units in order to quantify (i.e. attribute) their importance for
generalization performance (Morcos et al., 2018) and concept selectivity (Zhou et al.,
2018c) respectively. Our Net2Vec work (Fong et al., 2018b) can also be viewed as
learning a weighted perturbation over combinations of CNN hidden units to explain
how a CNN layer is globally selective for a specific concept. Other directions
in this vein include leveraging perturbations to attribute channels, pathways,
and/or network weights for an entire output class or concept (as opposed to a
single prediction). Yet another example is using perturbations to improve model
robustness. We explore this in Fong et al., 2019c; there, we apply spatial occlusions
during training in order to improve classification performance.

In summary, we have outlined three ways to build on our existing attribution
work: 1. to explain other components of a model; 2. to leverage other kinds of
perturbations; and 3. to apply perturbations to other problems.

7.2 Concept vectors

7.2.1 Related independent work to Net2Vec (Fong et al.,
2018b)

Zhou et al., 2018b and Kim et al., 2018 independently introduced IBD (inter-
pretable basis decomposition) and TCAV (testing with concept activation vectors)

11One way to view a typical CNN is that it predicts the most likely solution (i.e. the mean). If
they were to also predict a range of solutions (i.e. a distribution over solutions) instead of a single
solution, it would characterize the uncertainty (i.e. range or variance) of that prediction.

12This can be seen as an application of the explanation as meta-predictors framework we outlined
in Fong et al., 2017.

13This can also be extended to do uncertainty estimation on other components in the same way
as outlined above.
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respectively; both of these techniques are methodologically similar to Fong et al.,
2018b’s Net2Vec concept vectors. However, they both differ in their application
of concept vectors.

Zhou et al., 2018b primarily learn concept vectors in order to produce an
instance explanation that attribute the semantic concepts that contribute to a
CNN’s prediction. For each attributed concept, a CAM-like (Zhou et al., 2016a)
visualization is shown as well as a percentage of how much it contributed to the
prediction. Zhou et al., 2018b also qualitatively show how concepts contribute
to different output labels in a Sankey diagram.14

Similar to the latter application, Kim et al., 2018 primarily learn concept vectors
to globally attribute concepts and their relevance to an output class. In particular,
they introduce a relative concept vector, which allows them to compare the relative
impact of two different concepts (e.g. are “stripes” or “dotted” patterns more
relevant for the “zebra” class?). Kim et al., 2018 also report the accuracies of a few
of their concept classifiers at different layers in order to support their argument
that earlier layers tend to code for simpler concepts (e.g. colors) while later layers
code for more complex ones (e.g. objects).

In contrast to the applications of IBD and TCAV to generate instance and
global attribution explanations respectively, Net2Vec (Fong et al., 2018b) primarily
focuses on comparing the representations of single filters and those of combinations
of filters and argues that the single filter perspective is insufficient to fully describe
semantic concepts. Fong et al., 2018b also highlight how viewing concept vectors as
inhabiting an embedding space allows one to understand how a CNN understands
concepts relative to one other as well as how different representations compare
in their concept embeddings (e.g. what a CNN considers most similar to a “dog”
concept is influenced by its training dataset and task, what a CNN consider
supervised vs. unsupervised networks).

7.2.2 Future work

There are a few natural extensions to our Net2Vec work.
The first is to extend our Net2Vec to learn distributions of concept vectors

(i.e. probabilistic probes). Currently, we learn a single concept vector; however,
we can imagine a scenario where a variety of activation tensors code for the same
concept. A simple and interpretable probabilistic model of the distribution of

14A Sankey diagram is a flow chart in which arrows are typically color coded and proportionally
sized to reflect different magnitudes of contribution. See the Wikipedia article on “Sankey diagram.”

https://en.wikipedia.org/wiki/Sankey_diagram
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activations associated to a single concept would be useful for better understanding
how concepts are encoded.

The second is to invert our Net2Vec setup. Currently, we learn how to combine
filters to be highly correlated to a single concept. We could also consider learning
the inverse mapping: how to combine segmentation maps of concepts to be highly
correlated to a single filter. This would allow us to better answer the question,
“how many concepts can be ‘packed’ into a single filter?”

The third is to expand our analysis and leverage Net2Vec to compare the
differences between model architectures (e.g. AlexNet vs. ResNet-50), supervision
paradigms (e.g. supervised vs. self-supervised learning), and kinds of models
(e.g. artificial CNN vs. human or other mammalian brain). While our work briefly
outlined a few ways to do this using vector arithmetic (Bolukbasi et al., 2016)
and representational similarity analysis (Kriegeskorte et al., 2008), much richer
analysis can be done to better understand model differences using concept vectors.
In particular, the development of powerful interfaces that would enable us to
zoom in and out easily on analysis using concept vectors (e.g. from understanding
differences in encoding a single concept vs. differences between whole concept
embeddings) as well as to leverage other interpretability techniques would be
particularly useful. Such tools and analysis would allow us to understand which
concepts are more well defined.

7.3 Interactive visualizations

In comparison with other interactive works (fig. 2.18), there are few that are similar
to our interactive similarity overlays in being a light-weight, “drop-in” exploratory
tool for ML researchers and practitioners to understand the internal representation
of CNNs (i.e. re-usable, white-box, interactive visualization). Many visual interfaces
take varying amounts of effort to set up and are typically restricted to a specific
framework, model implementation, and/or dataset format. In contrast, our method
works for both PyTorch and TensorFlow and can easily be extended to work with
any Python framework. We hope more work follows that provides a similar light-
weight, “drop-in” experience to lower the barrier of usage. One example would be
to develop an interactive, perturbation-based visualization that allows a human
to visually perturb an input image and observe the effects.15

15This is somewhat similar to interactive visualizations for GANs (Zhu et al., 2016; Bau et al.,
2019a).
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There are a few natural extensions to our similarity overlays. The first is to use
them to explore other kinds of tasks, models, and datasets — e.g. self-supervised
tasks, recurrent models, medical imaging data, etc. The second is to use them to
explore more hypotheses, such as to investigate whether CNNs exhibit the gestalt
phenomenon16 (Kim et al., 2019). The third is to further build the visualization
with support for more features, such as color-coded positive and negative values17

and support for interactive charts.

7.4 Interpretability research

Thus far, we have discussed potential research directions that are directly related
to the work highlighted in this thesis. In this section, we take a step back and look
more broadly at the interpretability research space and discuss other promising
research directions that are currently under-explored.

We believe pursuing the following research avenues in the interpretability space
would be highly useful to the development of AI:

1. explain other kinds of deep learning models beyond image classifiers;

2. develop deep learning models that are “interpretable-by-design;”

3. build techniques to “debug” and “fix” deep learning models that have learned
incorrect correlations;

4. develop more metrics for evaluating interpretability techniques; and

5. build more intepretability tools for AI practitioners; in particular, more
interactive visual tools for human exploration.

In the rest of this section, we discuss these research directions, in particular the
first three, as the latter two have been discussed earlier in this chapter.

16The gestalt phenomenon refers to the human perceptual ability to perceive a whole object from
an incomplete presentation of its parts (e.g. visual “auto-complete”). Optical illusions frequently
rely on this phenomenon.

17Currently, we compute similarities of non-negative vectors (i.e. activations after ReLU layers);
thus, our similarity scores are always non-negative.
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7.4.1 Moving beyond image classifiers

Much work in interpretability research, including our own, has focused on building
knowledge about deep learning by studying a particular kind of model: a CNN
image classifier.

This is in part for historical reasons: deep learning regained popularity in
the AI research community in 2012 when Krizhevsky et al., 2012 demonstrated
how a CNN model (i.e. AlexNet) could yield superior performance on the image
classification task when trained on a large dataset, like ImageNet (Russakovsky
et al., 2015). Since then, there has been a flurry of research activity improving
upon Krizhevsky et al., 2012. This has resulted in the development of better image
classification models, such as VGG16 (Simonyan et al., 2015), GoogleNet (Szegedy
et al., 2015), ResNet (He et al., 2016). Because standard implementations of
these architectures were made available and supported in most major deep learning
frameworks (e.g. TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017)),
these architectures quickly became highly popular and easy-to-use. Thus, there was
a significant amount of support for studying image classification models, compared
to other tasks and domains, where the ecosystem was not as well developed and
in which support was solidified behind a few canonical models.

Another reason image classification is often studied in interpretability research is
due to the nature of the task and the large difference between the input and output
data. Unlike object segmentation models, which produce interpretable masks
that highlight the foreground pixels of a particular object, image classification
models predict a single label that indicates the dominant object in the image. This
classification label is not as interpretable as a dense segmentation mask. Thus, there
is arguably more need to explain models trained on tasks like image clasification —
i.e. ones that make concise predictions from high-dimensional input data.

That said, there are a number of other tasks and domains in which deep learning is
making gains, and it would be highly valuable to develop interpretability techniques
that explain the behavior and inner workings of models trained in those settings.18

Here are just a few settings for which interpretability would be highly useful.
First, it would be useful to better understand models trained for regression, which

predict a continuous value (i.e. a real number) as opposed to a discrete category as in
classification. Due to the wide range of possible predictions, understanding regression

18This is the topic of an upcoming research workshop titled “XXAI: Extending Explainable AI
Beyond Deep Models and Classifiers,” which this author is co-organizing.

http://interpretable-ml.org/icml2020workshop/
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models would be highly useful and would likely require different techniques than
those used to understand classification models.

Similarity models would also be interesting to study. Similarity models take as
input two entities (i.e. two images) and either output whether or not the two inputs
contain the same identity (i.e. two images of the same person) or predict a value
(i.e. similarity score) that quantifies how similar the two images are. Due to its
relative nature (i.e. outputs are relative and only make sense with respect to the
inputs), it would be interesting to develop interpetability techniques for this domain.

Lastly, it would be useful to develop more understanding for deep learning models
beyond convolutional ones, such as recurrent neural networks, deep generative
models, and deep reinforcement learning models.

7.4.2 “Interpretable-by-design”

Another under-explored research direction is the development of deep learning
models that are inherently interpretable by design.19

Much interpretablility work, including our own, has focused on understanding
CNNs post-hoc, that is, after they have been trained. This is popular because
much of the AI research community focuses on developing high-performance models
and typically turn to intepretability literature once such a model has already been
trained. That said, an arguably easier route to interpretable models would be to
design models to be explicitly interpretable.

This is subtly different than simply designing models to produce explanations,
as done in Hendricks et al., 2016; Z. Zhang et al., 2017; Huk Park et al., 2018. Much
work on models that are interpretable by design has focused on models outside of
the deep learning sphere (Lakkaraju et al., 2016; Kim et al., 2016). However, these
models tend to not match deep learning in their capabilities. Thus, it would be
highly beneficial to develop models that both inherently interpretable and build
off of the success of deep learning. A few works have already made progress in
these directions (X. Chen et al., 2016; Higgins et al., 2017; Q. Zhang et al., 2018;
Brendel et al., 2019; C. Chen et al., 2019).

7.4.3 Model debugging

One application of interpretability techniques (e.g. attribution heatmaps) has been
to identify systematic mistakes that models make. Because most machine learning
tasks can be viewed as a prediction task, most machine learning models aim to

19See Rudin, 2019 for discussion on why “interpretable-by-design” models should be developed.
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predict well based on the training data. Because training data is imperfect and
often reflects the biases of humans (Buolamwini et al., 2018), models can learn
highly predictive correlations that do not accurately reflect the causal relationship
between inputs and outputs — e.g. images of “dumbbells” should have “arms” in
them (Mordvintsev et al., 2015), the presence of snow is predictive of a husky
dog (Ribeiro et al., 2016). A few works have highlighted this problem (Lapuschkin
et al., 2016; Kindermans et al., 2019; Lapuschkin et al., 2019).

However, we currently have little recourse besides collecting a new dataset that
corrects for the undesirable correlation and retraining a model on it. Thus, it
would be highly useful if we could easily “debug” and “fix” deep learning models,
much like how bugs in software are debugged and patched (i.e. fixed).20 A few
works have made progress in this direction (Khanna et al., 2018; Fuchs et al., 2019;
Schulam et al., 2019; Kang et al., 2020).

7.4.4 Intrepretability metrics

As discussed in section 7.1.3, there is ample room to improve the metrics used for
evaluating interpretability research. Similar to the earlier discussion on metrics for
evaluating attribution heatmaps, there is little consensus in other interpretability
topics (e.g. concept vectors) on the best ways to evaluate techniques, with most works
building their own evaluation metrics or using qualitative examples to demonstrate
the superiority of their visualizations (e.g. feature visualizations). Thus, further
work can and should be done to better develop the desiderata of interpretability
techniques as well as to critically evaluate them.

One potential conflict of interest in developing such metrics is that of businesses
building products that use AI. As a community with close ties to industry, which
stands to benefit greatly from research developments in AI, we should expect that
our research community may have some shortcomings when it comes to rigorously
evaluating our models. To that end, we should encourage as many diverse actors as
possible to participate in the discussion of developing metrics (and more broadly,
explainable AI). Furthermore, as a community, we should also consider setting up
mechanisms for audits and transparency when it comes to model failures.

20This was the topic of a research machine learning workshop titled “Debugging machine learning
models.”

https://debug-ml-iclr2019.github.io/
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7.4.5 Interpretability tools for practitioners

Even though the focus of this thesis has primarily been research, translating research
to be more broadly used is highly valuable. Similar to how medical research often
translates into the clinic, we should aim to translate intepretability tools that would
be broadly useful to any machine learning practitioner.

As previously discussed in section 7.1.4, much interpretability work is research-
oriented: the majority of interpretability software consists of open-source repositories
containing research code; these typically are not easy for non-expert, machine
learning practitioners to use. A few works are more developer-oriented (Captum
2019; Wexler et al., 2019), yet there is ample space to build interpretability software
toolkits to empower the non-expert developer.

In particular, we believe more work should be done in the space of interactive
visualizations, in order to empower machine learning practitioners to easily explore
trained models. As mentioned in section 2.4 and section 7.3, there are relatively
few works that are similar to our interactive similarity overlays: Most work on
interactive visualizations for deep learning is restricted to only explain a specific
model (i.e. non-reusable), fail to visualize the internal dynamics of a model (i.e. are
black-box methods), and/or use interactivity to navigate an interface (i.e. visual
interfaces, as opposed to interactive visualizations). Thus, there is ample room for
more work to be done in developing light-weight, easy-to-use tools that empower
the machine learning practitioner (and researcher) to explore their model and
gain insight about its behavior.

7.5 Conclusion

In summary, as AI is increasingly applied to high-impact yet high-risk applications,
there is an increased need and desire for interpretability tools that aid humans
in understanding such systems. In this dissertation, we present a number of
novel methods for understanding CNNs. First, we present two principled methods
for understanding what parts of an input image are responsible for a model’s
output decision (i.e. the attribution problem): meaningful perturbations and
extremal perturbations. Second, we introduce Net2Vec, a novel paradigm for
understanding how semantic concepts are encoded inside a CNN. Third, we present
interactive similarity overlays, a new interactive visualization that enables AI
researchers and developers to explore the internal representation of CNNs. Lastly,
we outline some promising future directions in chapter 7. Just as medical diagnosis
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is useless without treatment, we hope further work not only improves our ability
to diagnose problems in CNNs but also empower us to repair them.
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In this primer, we describe essential mathematical notation and concepts used in
this thesis. Note that notation might be slightly different in the chapters presented
as papers (i.e. chapter 2 uses the notation presented here). Nevertheless, the
concepts described here are highly relevant to understanding the material in this
thesis and any other material that discusses CNNs.

This primer only assumes basic algebra (e.g. comfort with using variables) and
is heavily based on Quantstart, 2017 and Brownlee, 2018.

A.1 Sets and their basic notation

A set is an unordered1 collection of objects (i.e. order does not matter) with no
duplicates. It can be either finite or infinite2 in size. For example, the following
are sets of the primary colors, a few points, and the natural numbers (i.e. set
of positive integers) respectively:

A ={red, blue, yellow},

B ={(0, 0), (0, 1), (1, 0), (1, 1)},

C ={1, 2, 3, 4, . . .}.
(A.1)

Sets are most frequently described using curly braces (i.e. {. . .}) with elements
delineated by commas and are often represented as uppercase, italicized variables
(i.e. A, B, C), though they can be represented by other styles of uppercase variables.

A.1.1 Important sets

There are a few important sets that are represented by specific symbols. We have
already described the set of natural numbers, which is denoted by N = {1, 2, 3, . . .}.
Then there is the set of all integers (i.e. positive, negative, and zero), which is
denoted by Z = {. . . ,−2,−1, 0, 1, 2, . . .}. Finally, there is the set of real numbers
(i.e. all numbers that lie on a number line), which is given by R; this includes

1We introduce ordered sets later in this section; assume sets are unordered by default.
2i.e. there can be an infinite number of objects in a set.
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numbers like −1 (i.e. integers), 1
3 (i.e. rational numbers that can be represented

as a fraction), and π (i.e. irrational numbers).

A.1.2 Subsets

A subset3 is a set which is entirely contained in another set and is denoted as follows:

A ⊆ B, (A.2)

where ⊆ can be read as “is a subset of”. For instance, N ⊆ Z but N 6⊆ Z (where 6⊆
reads as “is not a subset of”), because the natural numbers (i.e. positive integers)
is a subset of all integers but the reverse relationship is not true.

There are several short-hand ways to describe subsets of real numbers (i.e. R)
that start and end at specific numbers. Consider all numbers between 0 and 1. If
we wanted to describe this set of numbers and include 0 and 1, we would describe it
using the following notation: [0, 1], where square brackets denotes inclusion. If we
wanted to exclude 0 and 1 from the set, we would describe it as follows: (0, 1), where
parentheses denotes exclusion. If we wanted to include 0 but exclude 1 from the
set, we would describe it as follows: [0, 1). Thus, the set of real numbers between
a and b can be described using square brackets and/or parentheses, depending on
whether each endpoint should be included or excluded from the set.

A.1.3 Set membership

To denote that an object can be found in a set, we use the inclusion symbol: ∈. For
example, x ∈ R states that x is in the set of real numbers (i.e. it is a real number).

A.1.4 Miscellaneous notation

To describe a statement that holds for all elements in a set, we use the following no-
tation: ∀x ∈ S . . ., which reads as “for all elements x in set S” as ∀ denotes “for all.”

A.2 Scalars, vectors, matrices, and tensors

A.2.1 Scalars

A scalar is a single number and is represented by lowercase, italicized variables,
such as x = 1.2 and y = −2. The important sets mentioned earlier (i.e. R)
are all sets of scalars.

3More precisely, A is a subset of B if and only if all elements in A are also in B.
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A.2.2 Vectors

A vector is an ordered list of scalars (a.k.a. an array4 of scalars). The most common
vectors are points on an xy coordinate graph, such as (1, 2); here, it’s clear that
position matters, as (1, 2) 6= (2, 1). Vectors are represented by lowercase, boldface
and italicized variables, such as x and y:

x =
[
1 2 3 4

]
,y =

1
2
3

 . (A.3)

They can be represented as row vectors (i.e. a single row, like x) or as column vectors
(i.e. a single column, like y) and with square brackets (i.e. [· · · ]) or parentheses
(i.e. (· · · )). In this thesis, we will use row and column vectors and both kinds
of brackets interchangeably.

We can also describe them using set notation as follows: x ∈ N4,y ∈ N3.
This denotes that x and y are vectors with 4 and 3 elements respectively and
are comprised of natural numbers. We note the size of a vector by saying it is
“n-dimensional” or of length n, where n denotes the number of elements in a vector
— i.e. x is a 4-dimensional vector.

To reference an element at a specific position within a vector, we use scalar
notation (i.e. lowercase, non-boldface) with a subscript to indicate the index
of the position:

z =


z1
z2
. . .
zn

 . (A.4)

In the above example, zi refers to the element in the i-th position. In the earlier
examples, x3 = 3 and y2 = 2.

A.2.2.1 Vector arithmetic

To add two vectors, they must be the same size. Then, for every position in the
vector, the two corresponding elements are added together. Given two vectors
a, b ∈ RN , adding the two vectors would result in the following vector c:

c = a + b =


a1 + b1
a2 + b2
. . .

an + bn

 . (A.5)

4In computer science, an array is a fixed-length, ordered list.



A. Primer on relevant mathematical notation and concepts 127

Similarly, element-wise multiplication takes two vectors of the same size and
multiplies together each of their corresponding elements to produce another vector of
the same size. Given two vectors a, b ∈ RN , we denote element-wise multiplication
using the Hadamard operator � as follows:

c = a� b =


a1 × b1
a2 × b2
. . .

an × bn

 (A.6)

The resulting vector is also known as the Hadamard product.
To multiply a vector with a scalar every element in the vector is multiplied by

the scalar. Given a vector c ∈ RN and a scalar s ∈ R, multiplying (i.e. scaling)
c by s sould result in the following vector d:

d = sc =


s× c1
s× c2
. . .

s× cn

 . (A.7)

A.2.3 Matrices

A matrix is a 2-dimensional5 rectangular array of scalars and represented by
uppercase and boldface variables, such as X and Y:

X =
[
1 2 3
4 5 6

]
,Y =

1 2
3 4
5 6

 . (A.8)

Using set notation, we would say X ∈ N2×3 and Y ∈ N3×2, where the superscript
M × N denotes a matrix with M rows and N columns.

To reference elements within a matrix, we use scalar notation (i.e. lowercase,
non-boldface) with subscripts denoting the row and column of the element:

Z =


z1,1 z1,2 . . . z1,n
z2,1 z2,2 . . . z2,n
... ... . . . ...

zm,1 zm,2 . . . zm,n

 . (A.9)

In the above example, zi,j refers to the element at in the i-th row and j-th column
of the matrix Z ∈ RM×N . In the earlier examples, x2,1 = 4 and y2,1 = 3.

5The dimensionality of an array denotes its geometric shape. A vector is a 1-dimensional array
because it expands along one dimension (i.e. either down a column vector or across a row vector).
This is in contrast to the dimensionality of a vector, which denotes the number of elements in it.



128 A.3. Sequences

A.2.4 Tensors

A tensor is a generalization of scalars, vectors, and matrices and can be an array
of any dimensionality.6 In the context of CNNs, 3D and 4D tensors are often used.
An image can be viewed as a 3D tensor, where the 3rd dimension corresponds to
the color channel. A batch of images (i.e. ordered set of images) can be viewed as a
4D tensor, where the 4th dimension corresponds to the index of an image.

In this thesis, we represent tensors such as an image tensor as follows: x ∈
R3×H×W , where the tensor variable x is represented in the same way as a vector
(i.e. lowercase, boldface, italicized) and the number of elements being multiplied
in the superscript of a set (i.e. 3 elements: 3, H, and W ) denotes the order of the
tensor. Conceptually, a 3D tensor can be imagined as a cube7 with a specific depth,
height, and width. An element in a 3D tensor is given by xi,j,k, where i, j, k denotes
the index of the channel, row, and column respectively.

We represent a 4D tensor (e.g. batch of images) as follows: x ∈ RB×C×H×W ,
where B denotes the batch size (i.e. number of images), C denotes the number
of channels (C = 3 for RGB images), H denotes the height (i.e. number of rows),
and W denotes the width (i.e. number of columns). An element in a 4th-order
tensor is given by xi,j,k,l, where i, j, k, l denotes the index of the batch element,
channel, row, and column respectively.

In this thesis, we will always order the dimensions of tensors with order greater
than 1 as follows: 1. batch (if given); 2. channel (if given); 3. row; 4. column.

Arithmetic operations on tensors (e.g. addition, element-wise multiplication,
scalar multiplication) work in the same way as those on vectors; matrix multiplication
can also be generalized to larger-order tensors.

A.3 Sequences

Mathematical operators are often applied to sequences (i.e. sum up all the elements
in a vector). In this section, we describe common notation used to succintly
describe sequences.

6The dimensionality of an array is also known as the order of an array — i.e. a 3D tensor can
also be described as a 3rd-order tensor.

7More precisely, as a cuboid.
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A.3.1 Ordered sets

To describe an ordered set8 with N elements, we use the following notation:

{xi}Ni=1 = {x1, x2, . . . , xN−1, xN}, (A.10)

where xi refers to the i-th element in the set, and the sub and super-script detail
the variable representing the index (i.e. i), its starting value (i.e. 1) and its ending
value (i.e. N). An ordered set can contain duplicates, that is, xi = xj where i 6= j is
allowed. In this thesis, assume that sets are unordered by default, unless explicitly
stated or denoted with this index notation.

A.3.2 Summing sequences

To describe summing along a sequence, we use the following notation:

y =
N∑
i=1

xi = x1 + x2 + . . .+ xn−1 + xn, (A.11)

where xi denotes the i-the element in the sequence and the uppercase Greek letter
Sigma (i.e. Σ) represents the sum operation.

A.3.3 Multiplying sequences

To describe taking the product (i.e. multiplying together) of elements of a sequence,
we use the following notation:

y =
N∏
i=1

xi = x1 × x2 × . . . xn−1 × xn, (A.12)

where the uppercase Greek letter Pi (Π) represents the product operation.

A.4 Tensor operations

In the context of deep learning, we often describe custom operations to tensors
(i.e. passing a tensor through a layer). We use function notation to describe
operations: f : D → R, where f denotes the function (i.e. operation), D denotes
the domain (i.e. the set of possible input values), and R denotes the range (i.e. the
set of possible output values).

8For the sake of simplicity, we abuse notation and describe what is typically known as a indexed
family as an ordered set — i.e. a collection of objects in which each object has an index. See the
Wikiepedia article on “Indexed family.”

https://en.wikipedia.org/wiki/Indexed_family
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The operations we consider typically take one input and produce one output
(though some CNN operations can take multiple inputs and produce multiple
outputs). We will most often describe this as follows:

y = f(x), (A.13)

where x denotes the input tensor the operation f and y denotes the output of
operation f when applied to x.

A.4.1 Linear combinations

A common operation that is frequently used in neural networks is computing
the linear combination of terms. A linear combination refers to the operation
that, when given a set of tensors (i.e. {x,y, z}) and a set of scalars (i.e. {a, b, c}),
multiplies each term with a constant and sums the result:

ax + by + cz, (A.14)

In the context of deep neural networks, the terms typically correspond to the
values in an input tensor and the constants to the learned parameters (i.e. weights).

A.4.2 Dot product

Another common operation that is closely related to linear combinations is taking
the dot product between two tensors (i.e. x and y) of the same size. The dot
product is the sum of the products of the corresponding entries in two sequences
(i.e. the Hadamard product) and is denoted using the · operator. For example, the
dot product of two 3D tensors x,y ∈ RC×H×W is given by

z = x · y =
∑

x� y =
C∑
c=1

H∑
i=1

W∑
j=1

xc,i,j · yc,i,j, (A.15)

In the context of convolutional weights, an output value is computed by taking the
dot product of a set of weights and a subset of input values of the same size.

A.4.3 Matrix multiplication

Matrix multiplication is also frequently used in deep learning. In order to do
multiply two matrices, A ∈ RM×N and B ∈ RN×P , the number of columns in
A needs to equal the number of rows in B (i.e. N , the inner dimensions need
to match). The dimensions of resulting matrix C ∈ RM×P is given by the outer
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dimensions of the two matrices (i.e. number of rows in A and number of columns
in B). Then, an element in the resulting matrix C = AB is computed as the
dot product of a row in A and a column in B:

ci,j =
N∑
k=1

ai,k · bk,j (A.16)

Note that, by definition, the order of the matrices being multiplied matters, that
is AB 6= BA. Here are the matrices with their element notation:


a1,1 a1,2 . . . a1,n
... ... . . . ...

am,1 am,2 . . . am,n



b1,1 . . . b1,p
b2,1 . . . b2,p
... . . . ...

bm,1 . . . bm,p

 =


c1,1 . . . c1,p
... . . . ...

cm,1 . . . cm,p

 . (A.17)

Now, we can work out the following example. Given the following matrices,

A =
[
1 2 3
2 3 4

]
,B =

1 2
2 3
3 4

 (A.18)

The result of multiplying the matrices C = AB is given as

C =
[
1 · 1 + 2 · 2 + 3 · 3 1 · 2 + 2 · 3 + 3 · 4
2 · 1 + 3 · 2 + 4 · 3 2 · 2 + 3 · 3 + 4 · 4

]
=
[
14 20
20 29

]
(A.19)

A.4.4 Matrix tranpose

Often, the transpose of a matrix is taken before doing matrix multiplication
in order to make the inner dimensions align. A matrix transpose, denoted as
MT ∈ RN×M is a version of another matrix M ∈ RM×N in which its rows and
columns have been swapped.

Here is an example of a matrix and its transpose:

M =
[
1 2 3
4 5 6

]
,MT =

1 4
2 5
3 6

 . (A.20)

A.5 Random numbers and variables

For a more detailed treatment on basic probability, see Blitzstein et al., 2019.
Many times, we desire to generate a random number. There are two main

distributions9 from which we typically sample (i.e. draw or select) random numbers.
9A distribution is a succinct description of all possible elements and the likelihoods (i.e. proba-

bilities) with which they can be sampled.
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Basic notation. We represent a random number and the distribution it is drawn
from as follows:

X ∼ D, (A.21)

where ∼ represents drawing X (on its left-hand) from D (on its right-hand), X
denotes a random variable that represents the random number drawn, and D
represents the distribution being drawn from.

A.5.1 Uniform distribution

The uniform distribution is one of the most basic random distribution and
describes drawing with equal likelihood (i.e. “drawing uniformly”) any option
from a set of possible options.

We most typically deal with a uniform distribution of a subset of the real numbers
(i.e. R) and can describe it in the same way we describe a range of real-numbers
starting at the minimal point a and ending at the maximal point b, with the option
of including or excluding the endpoints respectively: [a, b] or (a, b).

To describe the Uniform distribution succinctly, we use the following notation:

Uniform(a, b) or U(0, 1), (A.22)

where kind of bracket used denotes inclusion or exclusion of the endpoints.
Then, the following denotes a random variable X drawn from [0, 1]: X ∼ U [0, 1].
One way to describe the a distribution is via a special function, known as

a probability density function (PDF), whose output describes the relative
likelihood that the value of a random variable drawn from said distribution would
be equal to the input value to the function.

For the uniform distribution, its PDF is given as follows:

f(x) =


1
b−a , for a ≤ x ≤ b, and

0, for x < a or x > b.
(A.23)

This PDF function shows that all possibilities between a and b are equally likely.

A.5.2 Normal distribution

The normal distribution (a.k.a. gaussian distribution) is another basic random
distribution and is most succinctly preciesly described by its PDF function:

f(x) = 1
σ
√

2π
e−

1
2 (x−µ

σ
)2
, (A.24)
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where µ ∈ R (lowercase Greek letter mu) is a real number that describes the mean
(i.e. average) of the distribution and σ ∈ R+ (lowercase Greek letter sigma) is a
positive, real number that describes the standard deviation of the distribution.

A plot of the PDF function f(x) looks like a bell-shaped curve, where the
middle of the bell is at mean µ and the standard deviation σ controls how spread
out the bell-shape curve is.

Figure A.1: PDF of normal distribution with µ = 0. The percentages shown
highlight the percentage of the total area under the curve that is contained in a given
portion of the curve. Notice how these percentages demonstrate the 68-95-99.7 rule.
Reproduced image by M. W. Toews under CC BY 2.5.

More precisely, the standard deviation σ is the width on both sides of the mean
that defines an input range of (µ − σ, µ + σ). The portion of the area under the
curve that falls within that input range (i.e. within one standard deviation, ±σ)
is 68% of the total area under the curve (AUC). The corresponding portion that
falls within two standard deviations (i.e. input range of (µ− 2σ, µ+ 2σ)) is 95% of
the total AUC, and the corresponding portion for 3 standard deviations (i.e. input
range of (µ − 3σ, µ + 3σ)) is 99.7%. This property of normal distributions holds
regardless of specific µ and σ values and is known as the 68-95-99.7 rule.

Intuitively, samples drawn from a normal distribution are more likely to be
close to its mean µ than far away from it, with values greater than 3 standard
deviations (i.e. σ) away less than 0.3% likely to be drawn.

Notation describing the normal distribution is as follows

Normal(µ, σ) or N (µ, σ), (A.25)

where µ and σ denote its mean and standard deviation respectively.

https://commons.wikimedia.org/w/index.php?curid=1903871
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Standard normal distribution. Also known as the unit normal distribution,
the standard normal distribution is the Normal distribution with mean µ = 0
and standard deviation σ = 1 — i.e. N (0, 1)) — and is frequently used, hence
its special designation.

A.5.3 Bernoulli distribution

So far, we have only discussed continuous distributions that span a range of real
numbers. However, we can also have discrete distributions which present a set
of categories each with a different likelihood of getting drawn. Let us consider
the simplest discrete distribution: the Bernoulli distribution. Intuitively, the
Bernoulli distribution can be likened to a heads or tails coin flip of a weighted coin.
Let p be the probability of seeing heads; then, the probability of seeing tails is 1− p.
Formally, if X is a Bernoulli random variable with parameter p, then

P (X = 1) = p;P (X = 0) = 1− p, (A.26)

where X = 1 corresponds to the “heads” outcome in the coin flip analogy. Then,
a fair coin could be represented as a Bernoulli with p = 0.5.

A.5.4 Expectation

An high-level understanding how to compute an expectation is helpful for under-
standing the expected gradients method (Sturmfels et al., 2020), which we discuss
in section 2.2.1.2 as part of our literature review. In this section, we provide
such a high-level explanation.10

The expectation of a random variable is the weighted average of all possible
options. Intuitively, it is the arithmetic mean of a distribution.

For a finite, discrete random variable X with a finite set of possibilities:
x1, x2, . . . , xn, its expectation is as follows:

E[X] =
n∑
i=1

xiP (X = xi) = x1P (X = x1) + . . .+ xnP (X = xn) (A.27)

Consider a random variable X that is Bernoulli distribution with parameter p.
Using eq. (A.27), we can compute the expectation of a Bernoulli as follows:

E[X] = 0P (X = 0) + 1P (X = 1) = p (A.28)
10See the Wikipedia article on “Expected value” for more information.

https://en.wikipedia.org/wiki/Expected_value
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For the other two continuous distributions we covered, we will use the intuitive
definition of the arithmetic mean to introduce their expectations. The expectation
for a normally distributed random variable is given by µ:

E[X] = µ. (A.29)

For a uniformally distributed random variable X ∼ Uniform(a, b), its expecta-
tion is given by

E[X] = b− a
2 . (A.30)

Intuitively, this makes sense: the mean of a uniformally distributed random variable
is the midpoint between the endpoints of the distribution.

A.5.5 Independent and identically distributed random vari-
ables

So far, we described drawing real-valued scalars from the uniform and normal
distribution. However, in the context of deep learning, we often deal with whole
tensors that are randomly generated. The elements of such tensors can be described
most commonly as being independent and identically distributed (i.i.d.)
random variables.

Two random variables X and Y are identically distributed if they are drawn
from the same distribution (i.e. they have the same PDF function). Given the
following random variables:

X ∼ N (0, 1), Y ∼ N (0, 1), Z ∼ N (0, 2), (A.31)

X and Y are identically distributed but X and Z are not (because they have
different standard deviations σ, resulting in different PDF functions).

Two random variables X and Y are independent if the processes that generate
them are indepedent (e.g. not conditioned) on each other. For example, snowy
conditions and the temperatures are not independent events because snowy con-
ditions necessitates a temperature below freezing point (i.e. snow is conditioned
on temperature). One way to formally describe independent events is that the
probability of both events happening is equal the product of the probability of both
events happening on its own. This can be described mathematically as follows:

fX,Y (x, y) = fX(x)fY (y), for all x, y, (A.32)
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where fX and fY are the PDFs for random variablesX and Y respectively and fX,Y is
the joint PDF that describes the likelihoods of how pairs of possibilities (x, y) occur.

In our context, we often sample a tensor whose elements are i.i.d. from the
same distribution. We use the following notation to describe this:

x
i.i.d.∼ D, (A.33)

where x is a tensor whose elements are i.i.d. sampled from distribution D. Thus,
x

i.i.d.∼ U [0, 1] denotes a tensor whose elements are all uniformly drawn from
the range [0, 1].

A.6 Basic calculus

In this section, we cover some basic concepts from calculus11 that are helpful for
understanding how CNNs work. To read this thesis, one does not need to fully
understand these concepts, but simply need to understand at a high-lvel what
computing the “gradient” or “integral” means. Thus, we focus on providing an
intuititive explanation of these concepts and refer the reader to other sources
to fully understand them.

A.6.1 Differentiation: computing a gradient

A derivative or gradient of a function f at a point x refers to the slope (a.k.a. the
“rate of change”) of the function at that point (see fig. A.2).12

Figure A.2: Gradient of a function. This diagram visualizes a function (black curve)
at the specific point (red dot). The gradient of the function at the point is given by the
slope of the red line. This image is by Jacj at English Wikipedia and is available in the
public domain.

11Calculus comes from the Latin word meaning “small stone” and primarily concerns studying
how small changes affect a function. See this article on “Introduction to Calculus” for an accessible
introduction.

12This section is based on this article titled “Introduction to Derivatives.”

https://en.wikipedia.org/wiki/File:Tangent_to_a_curve.svg
https://www.mathsisfun.com/calculus/introduction.html
https://www.mathsisfun.com/calculus/derivatives-introduction.html
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Slope between two points. On an xy-plot (i.e. a Cartesian plot), the slope
of a function is expressed as follows (fig. A.3):

slope = change in y
change in x = ∆y

∆x, (A.34)

where the upper-case Greek symbol delta (∆) is read as “change in” and represents
the difference between two quantities. Formally, the slope m between two points
(x1, y1) and (x2, y2) can be calculated as follows:

m = y2 − y1

x2 − x1
. (A.35)

Figure A.3: Slope between two points. The slope between two points can be
calculated as the change in y over the change of x — i.e. ∆y/∆x, see eq. (A.35). This
image was originally created by Maschen; we modified and reproduced it via CC BY-SA
3.0.

For a motivational example, consider how we describe the speed of cars. Suppose
you drive 20 miles in 20 minutes. We would describe that speed as 60 miles per
hour. This is actually a slope and describes the average rate of change (i.e. change
of miles per hour) of a vehicle and is computed as follows:

20 miles
1
3 hour = 60 mph. (A.36)

Gradient at a single point. To find the slope at a single point, we consider a
very small change in x x + ∆x — affects the output of a scalar function f . We
can express the slope between x and x + ∆x as follows:

∆y
∆x = f(x+ ∆x)− f(x)

∆x . (A.37)

https://commons.wikimedia.org/wiki/File:Wiki_slope_in_2d.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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Then, to find a slope at x, we consider what happens when ∆x shrinks to become
infinitesimally small, that is, when ∆x goes to 0 (i.e. ∆x→ 0). This is the gradient
or derivative of a function f at point x (see fig. A.4).

Figure A.4: ∆x. Intuitively, the gradient of a function at a point x is the slope of the
function between x and x+ ∆x when ∆x is infinitesimally small (i.e. when ∆x goes to 0).
This image is part of an animated image originally created by Wikipedia user Brnbrnz
and is reproduced it via CC BY-SA 4.0.

Here, we have shown the gradient of a scalar y with respect to another scalar x.
In the context of CNNs, a gradient of a scalar is typically computed with respect
to a multi-dimensional tensor — i.e. the gradient of a loss function with respect
to a network’s weight parameters, which are typically stored as tensors.

In this thesis, we represent a gradient of a scalar y with respect to a ten-
sor x as follows:

∂y

∂x
, (A.38)

where the gradient would have the same shape as x.

A.6.2 Integration: computing an integral

An high-level understanding of integrals is helpful for understanding the integrated
gradients method (Sundararajan et al., 2017), which we discuss in section 2.2.1.2
as part of our literature review.13

Intuitively, an integral can be viewed as the “area under a curve,” and a definite
integral is the area under a curve in between points a and b. Figure A.5 visualizes
this interpretation. Given a scalar function f (i.e. the “curve”), the definite integral
of f between a and b is the sum of the colored areas between the function and the
x-axis. Areas where f(x) < 0 contribute negatively to the integral, while areas
where f(x) > 0 contribute positively to the integral.

13For an accessible introduction to integration, see this article on “Introduction to Integration.”

https://commons.wikimedia.org/wiki/File:Tangent_animation.gif
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://www.mathsisfun.com/calculus/integration-introduction.html
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Figure A.5: Example of an integral. The definite integral of a function f(x) between
points a and b is the sum of the signed areas under the “curve” of the function. For the
parts where f(x) < 0 (in yellow), those areas contribute negatively to the integral. This
image is by Wikipedia user KSmrq and is reproduced via CC BY-SA 3.0.

One way to think about approximating an integral is to be summing up “slices”
underneath a curve. Let us consider integrating the function f(x) =

√
x between

0 and 1. We can do this by “slicing up” the function as done in fig. A.6. Then,

Figure A.6: Approximating an integral. Here is an example of how the integral of
the function f(x) =

√
x from x = 0 to x = 1 can be approximated. This image is by

Wikipedia user KSmrq and is reproduced via CC BY-SA 3.0.

the integral is approximately equal to the sum of the yellow slices (or the sum
of the green slices). Concretely, let us work out the example shown in yellow.
Here, we evaluate f(x) at the following points: 0.2, 0.4, 0.6, 0.8, 1 (i.e. in increments
of ∆x = 0.2). To compute the area of one slice, we multiply the height of the
slice (i.e. f(x)) with its width (i.e. ∆x). Then, we can approximate the integral

https://en.wikipedia.org/wiki/File:Integral_example.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Integral_approximations.svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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by summing up the areas of all slices:

0.2(f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1.0)) = 0.7497. (A.39)

To compute an integral exactly, we consider what would happen if the slices
became infinitesimally small (i.e. ∆x → 0). Formally, we write a definite in-
tegral as follows:

c =
∫ b

a
f(x)dx, (A.40)

where a and b denote where to start and end integrating, f(x) denotes the function to
integrate, and dx denotes we are considering slices along x (i.e. we start integrating
at x = a and stop at x = b).

An integral can be viewed as the inverse of the derivative. To illustrate the
relationship between an integral and a derivative (i.e. a rate of change), let us
consider the vehicle speed example again. Let f(x) denote the speed of our vehicle
at time x (in hours). Then, if we are interested in the distance we have travelled
in the first 1 hour of driving, we can express it as follows:

∫ 1
0 f(x)dx. Suppose we

maintained an expect speed of 20 m.p.h for the first 20 minutes, 40 m.p.h. for
the second 20 minutes, and 60 m.p.h. for the third 20 minute-segment. Then,
we can write f(x) as follows:

f(x) =


20 for 0 ≤ x ≤ 1

3 ,

40 for 1
3 ≤ x ≤ 2

3 ,

60 for 2
3 ≤ x ≤ 1.

(A.41)

Now, we can compute our total distance in an hour as follows:∫ 1

0
f(x)dx = 1

3(20 + 40 + 60) = 40 miles. (A.42)

A.7 Notation for Convolutional Neural Networks
(CNNs)

In this thesis, we describe an object classification CNN as the following function:

Φ : R3×H×W → [0, 1]C , (A.43)

where Φ (i.e. uppercase Greek letter Phi) denotes the CNN, R3×H×W specifies
the input domain as the set of 3D tensors with 3 color channels, H rows, and
W columns that contain real numbers (i.e. RGB images), and [0, 1]C denotes the
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output range the set of vectors of length C with elements ranging from 0 to 1
inclusive. The output of the CNN can be viewed as vector containing probabilities,
where each element represents the probability that a specific object category is
the dominant object in the image.

To denote that the values of the network’s output vector has not been normal-
ized to range between 0 and 1 (i.e. does not represent probabilities), we would
describe it as follows:

Φ : R3×H×W → RC . (A.44)

A.7.1 Partial networks

To describe the set of operations (i.e. layers) from one point in the network Φ to
another (i.e. from layer l1 exclusive to layer l2 inclusive) we use the following notation:

Φl2
l1 , (A.45)

where the subscript denotes that the output of layer l1 is the input to our partial
network Φl2

l1 and the superscript denotes that l2 is the last layer applied to produce
the output of the partial network.

If we want to describe the network up to a certain point (i.e. starting from the
first layer to layer l), we use the following notation:

Φl, (A.46)

where the superscript denotes the last layer applied to produce this partial net-
work’s output.

Finally, to describe selecting an element from the output tensor produced by
the network Φ, we use the following notation:

Φc : R3×H×W → R, (A.47)

where c denotes the index of a particular object category whose output we are inter-
ested in.

A.7.2 Inputs, outputs, and intermediate tensors

A CNN can often be described as applying a series of layers (i.e. operations) that
each take as input a tensor and produce as output another tensor, that may or
may not have a different shape (i.e. the domain and range of the operation may be
different). In this thesis, we will usually describe the input tensor to a CNN Φ as
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x and the output tensor produced by Φ as ŷ, and an intermediate tensor (i.e. the
output of a layer that is not the last layer in Φ) as z. We use the hat symbol on top of
y (i.e. ŷ, read as “y-hat”) to denote an estimate of y (i.e. the target or ground-truth
label). Intermediate tensors are also known as activations or activation tensors.
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In this section, we provide a brief primer on deep learning, with a particular
emphasis on explaining the basics for training an object classification CNN. This
primer is primarily for readers with minimal background knowledge. For a primer
on the mathematical notation and concepts used, see appendix A. In particular,
see appendix A.7 for a detailed description of the notation we use to describe CNNs.

B.1 Machine learning set-up

A machine learning set-up is primarily defined by the following four ingredients:
the model being trained as well as the data, task, and training procedure used.

143
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B.1.1 Data

The training data is most often defined as pairs of inputs and outputs1 (i.e. D =
{(xi,yi)}Ni=1), where a model’s aim is to predict an output from its corresponding
input. For object classification, the inputs are RGB images (i.e. x ∈ R3×H×W ) and
the outputs are labels of the most dominant object in the corresponding images
(i.e. “sheepdog”, “sea snake”, “soup bowl”, “alps”, etc. ). The output label is also
known as the ground truth label. The output label for object classification is
usually represented as a one-hot vector2 of length C, where C denotes the number of
object categories (i.e. y ∈ RC) and the indices of the vector denote different object
categories. For a given input-output pair (i.e. (x,y)), the index of the output vector
(i.e. y) containing 1 denotes the most dominant object in the input image (i.e. x).

B.1.2 Task

The format of the training data is deeply related to the training task, which
is typically an informal description of the prediction task that the model is
being trained for.

B.1.2.1 Object classification

For example, object classification refers to the task of predicting the dominant
object category of an image, while colorization (R. Zhang et al., 2016) refers to
predicting a color image from a black-and-white version of it. More formally, the
task is typically defined by the training data and the loss function used to train
the model. The majority of machine learning tasks aim to minimize a loss function,
which captures a notion of error or incorrect behavior and can be optimized.3

B.1.2.2 Cross-entropy loss

For classification problems, the cross-entropy loss (a.k.a. log loss) function is typically
used.45 In its simplest form, it measures the performance of a classification model

1When the outputs require human annotation (i.e. labeling), this set-up is known as supervised
learning. When the outputs do not require human annotation (i.e. they are free), this set-up is
known as self-supervised learning. An example of a self-supervised set-up is predicting a color
image from a black-and-white version of it (R. Zhang et al., 2016).

2A one-hot vector is a vector which is filled with zeros except at one position, where it is filled
with a 1 (e.g.

[
0 0 1 0

]
).

3Optimization refers to the selection of the best solution from a set of possible solutions. See
the Wikipedia article on “Mathematical optimization”.

4This paragraph is paraphrased from (Loss Functions 2017).
5See this explanation for a more thorough and accessible, visual treatment of the cross-entropy

loss function.

https://en.wikipedia.org/wiki/Mathematical_optimization
https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a
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whose output is a probability between 0 and 1 (i.e. a binary classifier, in which
positive examples should be predicted as 1 and negative examples as 0). The
cross-entropy loss is large when the predicted probability is relatively far away from
the true (a.k.a. ground-truth) label and is small when the predicted probability
is relatively close to the true label. Thus a perfect model would have a loss of
0 and the goal of the model is to minimize the loss so that its predictions are
as close as possible to the true labels.

Mathematically, for a binary classifier for which the label is either 0 or 1
(i.e. y ∈ {0, 1}) and its prediction is between 0 and 1 (i.e. ŷ ∈ [0, 1]), the cross-
entropy loss function is defined as follows:

L = −(y log(ŷ) + (1− y) log(1− ŷ)). (B.1)

To build intuition, consider a poor prediction of ŷ = 0.2 vs. a better prediction
of ŷ = 0.9 for a positive example (i.e. y = 1). For the poor prediction, the value
of the loss is computed as follows:

L = −(1 log(0.2) + 0 log(0.8)) = −1 log(0.2) ≈ 0.70. (B.2)

For the good prediction, the value of the loss is as follows:

L = −(1 log(0.9) + 0 log(0.1)) = −1 log(0.9) ≈ 0.05. (B.3)

Thus, this simple example, makes clear that the value of the cross-entropy loss
function is higher for bad predictions and lower for good ones.

For a classification task with more than two possible label classes (a.k.a. multi-
class classification), the cross-entropy loss function is the sum of individual cross-
entropy loss terms for each label:

L =
C∑
c=1

yc log(ŷc), (B.4)

where yc ∈ {0, 1} refers to the value at index c of the one-hot vector y ∈ {0, 1}C

(i.e. it is either 0 or 1) and where ŷc ∈ [0, 1] refers to the value at index c of
the predicted output vector ŷ (i.e. it ranges from 0 to 1 and represents the
predicted probability for class c).

Typically, a task is formulated to minimize the loss function when applied to
all training examples (i.e. by summing up the loss values for each example). Thus,
for an object classifier, the following loss would be used:

L =
N∑
i=1

C∑
c=1

yi,c log(ŷi,c), (B.5)

where i represents the index of a specific training datapoint.
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B.1.3 Model

Deep learning refers to the use of artificial neural networks (a.k.a. deep neural
networks), which comprise a class of algorithms6 that is very loosely inspired by how
the human brain processes information. Deep neural networks consist of multiple
layers that successively process the input to the network, much like how the human
successively processes raw visual input from the eyes, in order to produce an output.
Some layers contain parameters (a.k.a. weights) that need to be optimized in order
for the network to perform the given task well. In appendix B.2, we go into detail
for the class of models discussed in this thesis: convolutional neural networks.

B.1.4 Training procedure

A deep neural network is typically trained by updating its parameters via back-
propagation in order to minimize a loss function.

B.1.4.1 Backpropagation

Backpropagation refers to a class of algorithms in which the gradients ∂L
∂θ

of a loss
function with respect to a network’s parameters, θ, are computed efficiently7 for
a single input-output pair (i.e. (x,y)). The gradient captures how much each
parameter should change (i.e. magnitude) and in which direction (i.e. positive or
negative) in order to increase the loss value for that particular input-output pair.

B.1.4.2 Gradient descent

Because we are interested in decreasing (i.e. minimizing) the loss, we typically
update parameters by taking a step in the negative direction of the gradient; this
is known as gradient descent and is given by the following update rule:8

θ := θ − γ ∂L
∂θ
, (B.6)

where γ is the step size (a.k.a. learning rate).
6An algorithm is a well-defined process to perform a computation or specific task. It is analogous

to a cooking recipe that instructs a novice chef how to make a scrumptious scone.
7As opposed to naively computing the gradient for every network parameter independently,

which would be computationally expensive.
8A := B denotes assigning the value of A to B in computer science notation. In the case

of eq. (B.6), the new value of θ is equal to to right hand side of the equation.
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In practice, stochastic gradient descent (SGD), an iterative method for updating
parameters based on random (i.e. stochastic) subsets (a.k.a. batches) of the training
dataset,9 is typically used:
Algorithm 1: Stochastic gradient descent (SGD)
Data: Training data D
Hyperparameters : T (# training steps), B (batch size), γ (learning rate)
Randomly initialize network parameters θ
for t = 1 . . . T do

Randomly sample a batch: {xb,yb}Bb=1 ∼ D
Compute loss for every item in the batch: {Lb}Bb=1
Update θ using batch’s gradient: θ := θ − γ

B

∑B
b=1

∂Lb
∂θ

end
The optimization settings T (number of training steps), B (batch size), and γ

(learning rate) are examples of hyperparameters for a network. A hyperparameter
is a parameter that is typically set prior to training by a human; this is in contrast
to the network’s parameters, which are automatically learned.

B.2 Convolutional neural networks

Convolutional neural networks (CNNs) are a particular kind of deep neural networks
that is most frequently used on visual data (e.g. an image). They are distinguished
by their use of convolutional layers, which enable them to recognize distinctive
visual patterns (e.g. furry ears) regardless of their location in an image. This
property is known as shift invariance.10

In this section, we briefly survey the basic components of a CNN.
A layer refers to an operation that is applied to an input tensor and produces

an output tensor, which may or may not be the same shape as the input tensor.

B.2.1 Linear layers

The basic building block of deep neural networks are linear layers that linearly
combine (see appendix A.4.1) an input tensor with learned parameters (i.e. weights)
to produce an output tensor.

There are two basic kinds of linear layers: fully-connected layers and con-
volutional layers.

9By taking random subsets, SGD approximates the actual gradient, which would need to be
computed for the entire dataset.

10Here, shift refers to shifting the position of a pattern and invariance connotes remaining
unchanged regardless of changes in another property (in this case, changes in spatial shift).
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B.2.1.1 Fully-connected layer

A fully-connected layer is a layer in which a unique weight is used to “connect”
every input neuron (i.e. element in the input tensor) to every output neuron
(i.e. element in the output tensor).

2-layer example. Consider the following neural network Φ : R3 → R2 that
contains two linear layers. Let the following matrices and vectors be the parameters
of the first and second layer (superscript denotes the layer index) defined as follows:

W 1 ∈ R3×4,W 2 ∈ R4×2, b1 ∈ R3, b2 ∈ R2, (B.7)

and let the following tensors be defined as the input, intermediate (i.e. activation),
and output tensors respectively:

x ∈ R3, z ∈ R4, ŷ ∈ R2. (B.8)

x1

x2

x3

z1

z2

z3

z4

ŷ1

ŷ2

1

1

W1 W2x ŷz

w1
i,j i,jw2

ib1 ib
2

Figure B.1: Diagram of two fully-connected layers.

Then, layer 1 can be defined as the function f 1 : R3 → R4, where the element
at the j-th position in the output tensor z is given by

zj = (
3∑
i=1

xi · w1
i,j) + b1

j . (B.9)



B. Primer on convolutional neural networks 149

Using matrix multiplication, we can write the function f 1 as follows:

z = f 1(x) = W 1Tx + b1, (B.10)

where W 1T : R4 → R3 is the transposed matrix of W 1 (i.e. matrix with its rows and
columns swapped). Layer 2 can be similarly defined as the function f 2 : R4 → R2,
with the j-th position element in its output given by

ŷj = (
4∑
i=1

zi · w2
i,j) + b2

j , (B.11)

and re-written using matrix multiplication as

ŷ = f 2(z) = W 2z + b2. (B.12)

Thus, a fully-connected layer linearly combines an input tensor with learned
parameters: a weights tensor (i.e. W 1 and W 2) and a bias tensor (i.e. b1 and b2).

As in this example, the input and output tensors of a fully-connected layer are
most commonly vectors (i.e. 1st-order tensors); thus it follows that the weights
tensor is a matrix (a.k.a. weights matrix) and the bias tensor is a vector (a.k.a. bias
vector or bias term).

General form. Now, we can write a general function ffc : RM → RN with weight
matrix W ∈ RM×N and bias term b ∈ RN to describe a fully-connected layer that
takes as input M -D vectors and outputs N -D vectors:

ffc(x) = W Tx + b. (B.13)

By definition, the j-th element of the output tensor z = ffc(x) is given by

zj = (
M∑
i=1

xi · wi,j) + bj. (B.14)

Working out an example. Finally, let us work out an example. Let us define
the weight matrices in fig. B.1 as follows:

W 1 =

0 1 2 3
1 2 3 4
2 3 4 5

 ,W 2 =


0 1
1 2
2 3
3 4

 , (B.15)
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and let both bias vectors be filled with 1. Then, the transposed weight matrices
are as follows (it’s easier to reason with the transposed matrices):

W 1T =


0 1 2
1 2 3
2 3 4
3 4 5

 ,W 2T =
[
0 1 2 3
1 2 3 4

]
. (B.16)

Now, consider the input vector x =
[
−2 0 1

]
.

Using the above equations, we compute the intermediate tensor z to be as follows:

z =


−2 · 0 + 0 · 1 + 1 · 2
−2 · 1 + 0 · 2 + 1 · 3
−2 · 2 + 0 · 3 + 1 · 4
−2 · 3 + 0 · 4 + 1 · 5

 =


2
1
0
−1

 , (B.17)

and the output tensor ŷ to be as follows:

ŷ =
[
2 · 0 + 1 · 1 + 0 · 2 +−1 · 3
2 · 1 + 1 · 2 + 0 · 3 +−1 · 4

]
=
[
−2
0

]
. (B.18)

B.2.1.2 Convolutional layers

In contrast to a fully-connected layer, which applies a unique weight to every input
neuron, a convolutional layer applies the same set of weights (a.k.a. convolu-
tional filters or convolutional kernels) to “neighborhoods” of input neurons. This
property of sharing weights makes convolutional layers well-suited for handling
visual information, as each filter can be tuned to recognize a particular pattern
(i.e. oriented edges, cat ear).

1D convolution. To build intuition, let us consider a simple example of a
1D convolution.11

In this example, the same weights vector w is applied to small neighborhoods
comprised of 3 input neurons each (i.e. (x1, x2, x3), (x2, x3, x4), and (x3, x4, x5)) in
a “sliding window” fashion. To compute the value of an output neuron (i.e. z2),
for every input neuron connected to it, multiply its value with the value of its
connecting weight (i.e. given by the line color), and sum up the products as follows:

zi = xi · w1 + xi+1 · w2 + xi+2 · w3. (B.19)
11Here, the dimensionality refers to the number of ways the weight moves. In this case, it can

only move along one direction (i.e. left-to-right). A 2-D convolution is used for images and can
move along 2 dimensions (i.e. up-and-down and left-to-right).
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x1

z1

x2 x3 x4 x5

w1 w2 w3

z2 z3
w

x

z

Figure B.2: 1D convolution. Notice how weights are re-used (i.e., line colors are
repeated) and applied in a “sliding window” fashion.

Now, let’s work out an example. Suppose the input and weight vectors are
given as follows:

x =
[
1 6 5 4 1

]
,w =

[
−1 0 1

]
, b = 0. (B.20)

Then, the resulting output vector is

z =

1 · −1 + 6 · 0 + 5 · 1
6 · −1 + 5 · 0 + 4 · 1
5 · −1 + 4 · 0 + 1 · 1

 =

 4
−2
−4

 . (B.21)

This particular convolutional filter detects the presence and orientation of 1D
“edges” (i.e. change in value within a neighborhood of neurons): A positive output
neuron denotes an input neighborhood where the leftmost input neuron is smaller
than the rightmost input neuron (i.e. value increases when comparing the left neuron
with the right neuron), a negative output neuron denotes the reverse (e.g. value
decreases), and the magnitude of the output neuron denotes the magnitude of the
difference in values between the two outer input neurons.

2D convolution. For images, a 2D convolution is typically used, as images are
two-dimensional. Similarly, to compute a value in the output tensor, consider the
dot product between a convolutional filter (i.e. w ∈ R3×Hk×Wk) and a same-sized
neighborhood in the input tensor.

In this example, we show one filter and the resulting output tensor slice (i.e. 3D-
tensor with a channel depth of 1). Typically, a convolutional layer applies more
than one filter. Because every filter produces an output tensor slice, the number of
channels in the output tensor is equal to the number of filters used.

Thus, a 2D convolutional layer can be defined as f2DConv : RCi×Hi×Wi →
RCo×Ho×Wo with weights tensor W ∈ RCo×Ci×Hk×Wk and, if used, bias tensor b =
RCo .12

12For conciseness and clarity, we do not use a bias tensor in the convolution examples.
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3

Wi

Hi

3 x Hi x Wi image

1 x Ho x Wo output slice

3 x Hk x Wk filter

1

Wo

Ho

3

Wk

Hk

Figure B.3: 2D convolution.

Then, given a neighborhood in the input tensor that has the same spatial
dimensions as the filters, i.e. x′ ∈ RCi×Hk×Wk , its corresponding output value
can be computed as follows:

zk = (
Ci∑
c=1

Hk∑
i=1

Wk∑
j=1

wk,c,i,jx
′
k,c,i,j) + bk, (B.22)

where zk ∈ R is the output value that corresponds to applying the k-th filter
to the neighborhood x′

In addition to filter size and the number of filters, there are a few other
hyperparameters for convolutional layers. Stride refers to the step size with which
to “slide” the filter across the input tensor. Padding refers to adding additional
input values (i.e. “padding” the input). The most common value with which to
pad an input tensor is 0 and is known as zero-padding. In the examples shown
here, we set the stride to be 1 (i.e. we shift the filter by an increment of 1) and
use no padding. In the following examples, we modified the earlier 1D example
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(fig. B.2) first to use zero-padding with a padding width of 1 (i.e. padding with
1 extra value on each side) and second to use a stride of 1.

x1

z2

x2 x3 x4 x5

z3 z4

00

z1 z5

x1

z1

x2 x3 x4 x5

z2

Figure B.4: More 1D convolution examples. Left: An example with padding
width of 1 on each side. Right: An example with a stride of 2.

Now, we can write a formula for calculating the spatial size of the output tensor.
To calculate the length of one output dimension O, we can use the following:

O = I −K + 2P
S

+ 1, (B.23)

where I is the input size, K is the length of the filter, S is the stride step size,
and P is the padding width, all along the same corresponding dimension. If the
result is a fraction, round up.

B.2.2 Other layers

In addition to layers that linearly combine tensors with learned weights, there
are several kinds of layers that enable a CNN to filter information such that only
relevant features are propagated.

B.2.2.1 Activation layers

An activation layer typically applies a non-linear,13 scalar function g : R→ R to
every element in the input tensor, thereby outputting a tensor of the same size.

The most common activation function used in modern CNNs is the ReLU
function, which stands for rectified linear unit, and is defined as follows:

g(x) = max(x, 0). (B.24)

In practice, the ReLU function allows a CNN to disgard non-relevant information
by setting all negative elements in an input tensor to 0. Because activation layers

13A linear relationship is one in which changes in the output are directly proportional to changes
in the input. For instance, the function f(x) = 2x is linear while the function f(x) = max(x, 0) is
non-linear. This is because there are times when x varies (i.e. when x < 0) and the variation in
the input is not reflected in the output.
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typically immediately follow linear layers, a CNN can adapt filters in the preceding
linear layer to fire positively when they recognize relevant features. Then, the
following ReLU layer could “forget” neurons that captured irrelevant features.

Now, we can take a look at a simple example. Given an input tensor

x =

−2 1 2
0 −1 1
3 −1 2

 , (B.25)

the result of passing it through a ReLU layer would be as follows:

z =

0 1 2
0 0 1
3 0 2

 . (B.26)

B.2.2.2 Pooling layers

A pooling layer forces information to be compressed spatially. Similar to 2D
convolutions, which operate on spatial neighborhoods of elements in an input tensor,
most pooling layers operate on neighborhoods in the input.

The max pooling operation chooses the maximum value from a set of inputs
(i.e. spatial neighorhood) as the output value, while average pooling sets the
output value as the average (i.e. mean) of a set of input values.

Because pooling layers are typically used to compress information spatially,
they usually leave the channel dimension unchanged and apply pooling functions
(i.e. max or average pooling) to spatial neighborhoods of tensor slices, that is, they
are applied to every channel independently.

Now, we can define the pooling functions precisely. Given x′ ∈ RHk×Wk , a
tensor slice representing a spatial neighborhood, max pooling and average pooling
are defined as

gmaxpool(x′) = Hkmax
i=1

Wkmax
j=1

x′i,j and gavgpool(x′) = 1
Hk ·Wk

Hk∑
i=1

Wk∑
j=1

x′i,j. (B.27)

Finally, let’s work through a simple example.
Given an input tensor slice as follows:14

x =


−2 1 −3 4
3 −2 0 −1
2 1 −1 −2
0 −2 1 −3

 . (B.28)

14For simplicity, we are considering an input tensor with only one channel. For tensors with
more than one channel, the same procedure would be applied to every channel in the input tensor.
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The result of passing it through a max pooling layer that uses a 2 × 2 neigh-
borhood is as follows:

z =

3 1 4
3 1 0
2 1 1

 . (B.29)

B.2.2.3 Regularization layers

There are also a number of layers that regularize the activation tensor (e.g. via
dropout, batch normalization, etc.). For brevity, we only describe dropout.

A dropout layer randomly “drops” (i.e. sets to 0) input values and can be
described as applying the following function g : R → R element-wise (i.e. to
every input value):

g(x) =

x p ≤ 0.5,
0 otherwise,

(B.30)

where p is a unique random number generated afresh every time the function is
applied. The result is that approximately half of the activation tensor is “dropped”.
This simple technique forces the model not to be too dependent on any one feature,
as it will be dropped half of the time. This tends to improve a model’s robustness
(i.e. ability to perform well under a variety of conditions) and overall performance.

B.2.3 Putting it all together

Now that we’ve discussed various components of a CNN and aspects of a deep
learning set-up, let’s put this knowledge all together.

B.2.3.1 Model architecture

A CNN architecture refers to the specific configuration of layers and their settings
(i.e. filter size, number of output channels, stride, padding).

In fig. B.5, we show a diagram detailing the AlexNet (Krizhevsky et al., 2012)
architecture, which was one of the earliest demonstrations of the power of CNNs
on object classification. This model uses around 61 million parameters (i.e. total
number of scalars in all weight and bias tensors). Because a CNN is typically
highly-parameterized, it is not feasible to understand a model simply by examining
its parameters, due to the sheer volume of them.

Other popular CNN architectures include VGG networks (e.g. VGG16) (Si-
monyan et al., 2015), GoogLeNet (Szegedy et al., 2015), and residual networks
(e.g. ResNet50) (He et al., 2016).



156 B.2. Convolutional neural networks

B
lock 1

B
lock 2

B
lock 3

B
lock 4

B
lock 5

C1
R1

P1
C

2
R

2
P

2
C

3
R

3
C

4
R

4
C

5
R

5
P

5
F7

R7
F6

D7
D6

R6
F8

S6

R
eshape (S

)

D
ropout (D

)

Fully-connected (F)

R
eLU

 (R
)

M
ax P

ool (P
)

2D
 C

onvolution (C
)

4096

1000

4096

9216

256x6x6
(3x3, s2)

256x13x13
(3x3)

256x13x13
(3x3)

384x13x13
(3x3)

192x13x13
(3x3, s2)

192x27x27
(5x5)

64x27x27
(3x3, s2)

64x55x55
(11x11, s4)

B
lock 6

B
lock 7

3x224x224

F
igure

B
.5:

A
lexN

et
architecture.



C
Other interpretability papers

Contents
C.1 Occlusions for Effective Data Augmentation in Image

Classification . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.2 There and Back Again: Revisiting Backpropagation

Saliency Methods . . . . . . . . . . . . . . . . . . . . . . 168

In this appendix, we include two first-author papers (Fong et al., 2019c; Rebuffi
et al., 2020) that are related to the subject of this thesis.

C.1 Occlusions for Effective Data Augmentation
in Image Classification

The following paper was presented at the workshop on Interpreting and Explaining
Visual Artificial Intelligence Models, which was co-located at the IEEE International
Conference of Computer Vision (ICCV) at Seoul, South Korea in 2019 (Fong
et al., 2019c).

In Fong et al., 2019c, we demonstrate how to improve the performance of object
classifiers by leveraging input-level perturbations as a data preprocessing step.
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Occlusions for Effective Data Augmentation in Image Classification

Ruth C. Fong∗

University of Oxford
Andrea Vedaldi
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Abstract

Deep networks for visual recognition are known to lever-
age “easy to recognise” portions of objects such as faces
and distinctive texture patterns. The lack of a holistic under-
standing of objects may increase fragility and overfitting. In
recent years, several papers have proposed to address this
issue by means of occlusions as a form of data augmenta-
tion. However, successes have been limited to tasks such as
weak localization and model interpretation, but no benefit
was demonstrated on image classification on large-scale
datasets. In this paper, we show that, by using a simple
technique based on batch augmentation, occlusions as data
augmentation can result in better performance on ImageNet
for high-capacity models (e.g., ResNet50). We also show
that varying amounts of occlusions used during training can
be used to study the robustness of different neural network
architectures.

1. Introduction
Robustness to occlusions is an important property of

image recognition systems. That is, a robust image clas-
sifier should be able to solve the problem even if only a
portion of the object of interest is visible in an image. How-
ever, the image classification datasets commonly used to
train high-performance models such as deep neural networks
are strongly affected by the so called “photographer bias”.
Among other things, this bias means that the main subject of
these pictures tends to be centred and clearly visible. As a
consequence, learning a model on such data may results in
“lazy” networks that focus too much on easily recognizably
details (such as the face of a cat) and cannot understanding
other, more subtle cues (such as the cat’s body) that may be
important in harder scenarios.

A few authors have proposed to address this issue by aug-
menting the training data via simulated occlusions. While
details change depending on the specific method, the general
idea is that, if part of the image is not visible at training time,
then the network should be stimulated to learn to recognize
all available evidence, thus avoiding to over-rely on the most
∗Work done as a contractor at FAIR.

obvious evidence. However, the success of these techniques
has been mixed. [21, 16] showed improvements on the abil-
ity of the network to localize objects but not on the original
task of object recognition. [1] demonstrated better perfor-
mance in classification performance in simpler datasets such
as CIFAR10 [6] but not in larger, more complex ones such as
ImageNet [13] (as confirmed in our experiments and in [3]).

A hypothesis for this behaviour is that training using oc-
clusion augmentation improves the robustness of the model
to occlusions, but that this does not correspond to a test-time
performance improvement because the test set does not, in
fact, contain occlusions.

In this paper, we show that this is not the case. The issue
can be solved, and a performance improvement observed
consistently, provided that the augmentation is incorporated
properly in the training procedure. We make three main
contributions: (1) We demonstrate that augmenting image
batches with several versions of the same image, in the spirit
of batch augmentation [5], allows occlusion augmentation
to consistently outperform the baselines on for CNN archi-
tectures that are sufficiently powerful (e.g., ResNet50). (2)
We present a detailed analysis of why occlusion augmen-
tation has not yielded improvements in the past. (3) We
conduct a thorough investigation on how to optimally tune
occlusion augmentation, showing differences as a function
of the model architecture. For example, we demonstrate
that more powerful models (e.g., ResNet50 [4]) can handle,
and benefit from, significantly more substantial occlusions
during training than weaker ones (e.g., AlexNet [7]).

2. Related work

Occlusions have been successfully used for model inter-
pretability and weak localization. A few attribution methods
have used fixed [22], stochastic [11], and optimized [2] oc-
clusions to diagnose “where” a network is “looking” in the
input for evidence for its prediction. A few works have
demonstrated that applying random [16] or optimized [21]
occlusions to the input or intermediate activations [20] can
improve weakly supervised localization (but not necessarily
image classification) by forcing a classification network to
be robust to occlusions and thus rely other parts of an object
besides its most discriminative parts.

1



Cutout [1] and Hide-and-Seek [16] both introduce
stochastic input-level occlusions: Cutout “drops” (i.e., zeros
out) randomly positioned squares (Figure 2), while Hide-
and-Seek divides an image into a square grid and “drops”
grid patches independently (Figure 1). Hide-and-Seek [16]
highlights its improvements of weak localization at the ex-
pense of classification performance on ImageNet [13]. Al-
though Cutout [1] improves performance on CIFAR10 and
CIFAR100 [6], [3] reported that it did not improve classifi-
cation performance on ImageNet.

Other regularization methods related to occlusions are
techniques inspired by Dropout [17], which “drop” parts
of intermediate activation tensors, such as DropPath [8],
Scheduled DropPath [24], Spatial Dropout [19] and Drop-
Block [3]. Whereas Dropout [17] drops a single voxel from
a 3D activation tensor of a given input, DropPath [8] drops
a whole branch of a network while Spatial Dropout [19]
drops a whole slice in a 3D activation tensor associated
to a filter. DropBlock [3] can be viewed as an extension
of Cutout [1] applied to intermediate activations. In this
method, contiguous blocks in each activation slice associ-
ated to a filter are dropped. These techniques, particularly
DropBlock [3], yield modest but consistent improvements in
ImageNet [13] classification performance; however, they all
require architectural change and, in the case of Scheduled
DropPath [24] and DropBlock [3], requires using a training
schedule specific for its modules. Label smoothing [18] is
another related regularization technique, in which noise is
added to the training labels.

Recently, batch augmentation [5] was introduced as a
way to augment existing data augmentation techniques by
including multiple copies of the same image (i.e. copying
an original batch M times) and applying data augmentation
to each of the copies. When coupled with Cutout [1], batch
augmentation significantly improved performance on small
datasets like CIFAR10 and CIFAR100 [6].

Similar to [21], which uses CAM (class activation
maps) [23], we explore using the heatmaps produced by attri-
bution methods to occlude images during training. We focus
on the gradient-based saliency method introduced in [12],
which is closely related to Grad-CAM [14] and the linear
approximation [10] at a specific layer. [12] shows that
their method, when used to aggressively occlude images
during training outperforms other baselines, including Grad-
CAM [14]. While [12] focused on dataset compression and
willingly sacrificed on task performance, we are interested
in using occlusions to improve task performance.

Our work most directly builds off of Cutout [1], Hide-
and-Seek [16], the gradient-based saliency method in [12],
and Batch Augmentation [5].

Figure 1. Stochastic Hide-and-Seek [16] occlusions. With prob-
ability pkeep image, the image is fully preserved (left). With 1 −
pkeep image, each cell in a disjoint G×G grid (with side length S)
is randomly occluded with probability 1 − pkeep patch (right). For
joint training, an image duplicated into two copies, where one is
always occluded (pkeep image = 0) and the other never occluded
(pkeep image = 1). White grid lines are used for illustration.

Figure 2. Stochastic Cutout [1] occlusions. For a given image,
the center points of N square occlusions of side length S are
independently and randomly placed (N = 6, S = 56 in these
examples).

3. Method

We introduce a simple paradigm for using occlusions
effectively as data augmentation. For every image x ∈
R3×H×W , we generate a pattern of occlusion m ∈
R1×H×W using one of the methods described below. Then,
for a given batch of images X ∈ RB×3×H×W , we copy the
batch. We apply the set of occlusions, M ∈ RB×1×H×W ,
to one copy of the batch, leaving the other batch unoccluded,
and train jointly with one combined batch: (X,X �M).
We occlude a pixel by replacing it with the mean average
colour (i.e. setting it to zero after mean normalization). Our
joint training is inspired by batch augmentation [5].

Stochastic occlusions. We first consider two existing
ways of generating occlusions stochastically: Hide-and-
Seek [16] and Cutout [1]. Hide-and-Seek (H&S) divides
an image into a G × G grid and drops patches in the
grid independently with probability 1 − pkeep patch, where
pkeep patch ∈ [0, 1] denotes the probability of preserving the
original patch (Figure 1). Cutout (CO) drops N square
patches1 of side length S; the center of these patches are
placed uniformly at random on the whole image, thereby
allowing for some patches to “overflow” off the image, as

1The original Cutout paper [1] only considers N = 1 patch.



Figure 3. Saliency-based [12] occlusions. A saliency map at a
given layer is generated according to Equation (1) and is then
bilinearly upsampled to image size (middle). Next, the S × S
maximal patch is extracted and jittered by τ (right). Here, a “cello”
saliency map is generated at VGG16-BN’s conv5, with S = 56
and τ ∈ [−16, 16].

done in [1] (Figure 2).
To analyse whether jointly training with an image oc-

cluded and unoccluded in the same batch is necessary, we
introduce another hyperparameter, pkeep image ∈ [0, 1]. When
using Hide-and-Seek occlusions without joint training (i.e.,
every image is in the batch exactly once), we show the
full image with probability pkeep image. Otherwise, we show
an image occluded with Hide-and-Seek-style dropout, in
which a patch is preserved with probability pkeep patch. When
pkeep image = 0, every image is potentially occluded; when
pkeep image = 1, all images are unoccluded (i.e., standard
training).

When comparing these two types of stochastic methods,
Hide-and-Seek allows us to more easily and precisely define
the amount of occlusion being applied on average. This is
because Cutout occlusions are allowed to flow over image
boundaries and can overlap with one another in the case
of N > 1 patches being cut out. Pairing Hide-and-Seek
with standard data augmentation (i.e., random cropping and
resizing) simulates dynamic occlusions while its disjoint grid
makes it easy to reason about the occlusions being applied.
Nevertheless, Cutout is more comparable to the next type of
occlusions we consider: saliency-based occlusions.

Saliency-based occlusions. We also consider generating
occlusions based on saliency. Given a saliency heatmap, we
extract an occlusion that is most salient compared to other
potential patches. In this way, we use saliency heatmaps to
guide occlusion locations as opposed to randomly sampling
their locations. This allows us to fairly compare against
Cutout [1] as we consider occlusions of the same size.

In our experiments, we use [12]’s gradient-based saliency
method, which we summarize here (Figure 3; see [12] for
more details). For a given layer l, a saliency heatmap s ∈
RHl×Wl can be generated by computing the Frobenius norm
of the product of layer l’s activation and gradient vectors,
x′i,j , gi,j ∈ RKl , at every spatial location (i, j):

si,j =
∥∥∥gi,jx′>i,j

∥∥∥
F
= ‖gi,j‖ ·

∥∥x′i,j
∥∥ (1)

Intuitively, [12]’s saliency method precisely characterizes
the contribution of every spatial location to the gradient of a
hypothetical, subsequent 1× 1 convolution weights tensor
initialized with identity. We chose to use [12] because it
generates high-quality, dense saliency maps at any network
depth. In contrast, Grad-CAM [14] only works at the last
conv layer.

For every image, we compute a saliency map with respect
to the ground truth label and upsample the saliency map
to the original image resolution RH×W . We then find the
square patch with side length S of the upsampled saliency
map2. Finally, we add a small amount of jitter τ to the
extracted patches. Unlike Cutout, we do not allow our patch
to overflow the image boundaries (i.e., it will always be fully
contained in the image).

4. Experiments
4.1. Implementation details

All models were trained for 100 epochs with the learning
rate decayed by 0.1 every 30 epochs (i.e., at 30, 60, and
90 epochs). The initial learning rate for ResNet50 [4] and
VGG16-BN was 0.1; for AlexNet [7] and VGG16 [15] it was
0.013. All models used an original batch size of 256; jointly
trained models used an actual batch size of 512, in which
the original batch is duplicated and one copy is occluded.
The actual batch was split across 8 GPUs. The original
batch was preprocessed using standard data augmentation4:
random cropping to 224 × 224, horizontal flipping, data
normalization to µ = 0, σ = 1.

When jointly training, the standard data augmentation
(i.e., random cropping, etc.) occurs before the batch is dupli-
cated, so the images are identical except for the regions that
are occluded, i.e., M . This differs from batch augmentation,
in which images are preprocessed independently rather than
identically.

Baselines. For non-joint training baselines, we trained net-
works in the usual fashion without occlusions. We intro-
duced another set of baselines to account for the possible
effect of doubling training time via joint training. The joint
training baseline refers to networks that have been trained
without occlusions but with duplicated batches, that is, every
image appears exactly twice in the batch.

4.2. Stochastic occlusions

Experiment set-up. We first trained networks using Hide-
and-Seek [16] occlusions. For these experiments, we divided

2In practice, we do this by convolving the saliency map with a S × S
convolutional filter with stride T and filled with 1s.

3This was chosen for the non-batch normalization models based on grid
search over the following learning rates: 0.1, 0.05, 0.01, 0.005, 0.001.

4We used default PyTorch ImageNet preprocessing: https://
github.com/pytorch/examples/tree/master/imagenet



Figure 4. Saliency visualizations [12] comparing standard vs. occlusion-augmented ResNet50s (layer3.0.conv1). Left: original image;
Middle: visualization for a ResNet50 baseline without joint training (76.43% [top-1] 93.17% [top-5]); Right: visualization for a ResNet50
trained jointly with Hide-and-Seek (pkeep patch = 0.6; 76.43% [top-1] and 93.17% [top-5]). Top predicted classes by the network are above;
ground truth labels are on the left.

images into 4× 4 grids (G = 4) and preserved patches with
p ∈ {0.5, 0.6, . . . , 0.9}. With a 224 × 224 cropped image
size and grid size of G = 4, the size of the Hide-and-Seek
patches were 56× 56 (S = 56).

Based on our Hide-and-Seek results, we then train
select networks (ResNet50 and AlexNet) using Cutout-
style occlusions. Here, we occluded an image with ei-
ther N ∈ {1, 2, 4, 6, 8} square patches with side lengths
S ∈ {56, 84, 112}.

For both kinds of occlusions, we trained networks jointly,
that is, every batch was doubled and one copy was preserved
as is (i.e., with full images) while occlusions were applied to
the other copy. At evaluation time, no occlusions are applied.

Results. Table 1 reports ImageNet top-1 and top-5 accu-
racy for various networks when trained jointly with Hide-
and-Seek occlusions, while Table 2 and Table 3 reports re-
sults for ResNet50 and AlexNet respectively when trained

jointly with Cutout occlusions.

Table 1 shows that ResNet50 improves significantly
(+0.62% in top-1 and +0.35% in top-5 for the optimal
p∗kp = 0.5) when jointly trained with H&S occlusions.
Furthermore, ResNet50 consistently beats the baseline (10
of 10 results improve) regardless of the pkeep patch hyper-
parameter. However, for all other networks, the best im-
provements are negligible: 0.07%, 0.04%, 0.02% in top-
1 and 0.07%,−0.05%,−0.07% in top-5 for VGG16-BN,
VGG16, and AlexNet respectively. Consistent with the re-
sults reported in [5], the difference between the joint and
non-joint baselines in Table 1 appears roughly correlated
with network performance, with ResNet50 having no dif-
ference and while the others demonstrate significant im-
provement with joint training: top-1 baselines improve by
0.00%, 0.84%, 0.62%, 0.95% for VGG16-BN, VGG16, and
AlexNet respectively.

Thus, we focus our attention on ResNet50 for Cutout



ResNet50 VGG16-BN VGG16 AlexNet
top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

baseline (w/o joint) 76.40 93.10 74.11 91.81 71.75 90.45 56.39 79.19
baseline (w/ joint) 76.40 93.03 74.95 92.31 72.37 90.91 57.34 79.72

pkeep patch = 0.9 76.58 93.19 74.66* 92.29* 72.20 90.73 57.36 79.65
pkeep patch = 0.8 77.97 93.31 74.82 92.34 72.31 90.75 56.98 79.48
pkeep patch = 0.7 76.90 93.33 74.97 92.32 72.37 90.86 56.97 79.48
pkeep patch = 0.6 77.01 93.45 74.85 92.30 72.41 90.81 56.97* 79.35*
pkeep patch = 0.5 77.02 93.45 75.02 92.38 72.22 90.69 56.59 79.11

Table 1. Stochastic Hide-and-Seek [16] occlusions (joint training). ImageNet top-1 and top-5 accuracies (%) are averaged over 3 runs
except where * (denotes 2 runs); stddev mean = 0.14 with range [0.02, 0.31]. ResNet50 notably improves by 0.62% when jointly trained
with H&S occlusions.

S =56 S =84 S =112
N top-1 top-5 top-1 top-5 top-1 top-5

1 76.72 93.33 76.58 93.09 76.86 93.38
2 76.55 93.12 76.94 93.32 76.96 93.36
4 76.82 93.47 77.07 93.47 77.19 93.46
6 77.17 93.54 77.25 93.48 76.80 93.39
8 76.80 93.36 76.94 93.33 76.39 93.18

Table 2. Cutout for ResNet50 (joint training). Results reported
on one run. S = side length of square patch; N = # of patches to
cut out. For comparison, the joint baselines are 76.40% (top-1) and
93.03% (top-5) and the best joint Hide-and-Seek (p∗keep patch = 0.5)
results are 77.02% (top-1) and 93.45% (top-5) from Table 1.

experiments. Table 2 shows that Cutout with joint training
on ResNet50 nearly always improves on the baseline (23 of
25 results improve), regardless of the size and number of
patches occluded (S andN ). The best result improves 0.85%
for top-1 and 0.38% for top-5 over baselines, with the top-1
improvement being substantially higher with the best Cutout
hyper parameters (77.25% with N = 6, S = 84) than that
with the best Hide-and-Seek ones (77.02% with pkeep patch =
0.5).

In contrast, Table 3 shows that Cutout with joint training
on AlexNet rarely improves on the joint baseline (only 1 of
25 results improves; we include this table for comparison
with saliency-based occlusions in Section 4.4).

Taken together, these results suggest that, for complex
datasets like ImageNet, a suitably powerful architecture like
ResNet50 is likely necessary to benefit from occlusion aug-
mentation.

Occlusions as a stethoscope for model capacity. The re-
sults for both kinds of stochastic occlusions (Table 1 and Ta-
ble 2) peak in performance with the best hyper-parameters
and then roughly monotonically decrease from that point.
Thus, training with occlusions is beneficial from a model
understanding perspective, as it provides a way to identify

and quantify an architecture’s upper bound for handling oc-
clusions at evaluation time. For Hide-and-Seek (Table 1),
we see that the optimal p∗keep patch ∈ [0.5, 0.6] for ResNet50
and VGG16-BN, p∗keep patch ∈ [0.6, 0.7] for VGG16, and
p∗keep patch = 0.9 for AlexNet. This suggests that AlexNet can
only handle a small amount of occlusion (images occluded
up to 10% on average), while VGG16-BN and ResNet50
are capable of handling images that have been occluded up
to 50% on average, when trained properly with occlusions
(ResNet50 and VGG16-BN may be able to handle more than
50%, but this was not tested).

Visualizations. Figure 4 compares a ResNet50 non-joint
baseline against a ResNet trained jointly with Hide-and-
Seek pkeep patch = 0.6 best by using [12]’s saliency method
on layer3.0.conv1. Here, we visualize saliency maps for a
few examples in which the occlusion-augmented network
was correct and the baseline was wrong. Qualitatively, we
observe difference in the models’ predictions in their visual-
izations: In the suit image, the augmented network focuses
on the tie while the baseline is attracted to the man’s gaze
and elbow. Same with the ball player, we see the baseline’s
mistake in focusing on the bottom edge of the image. In
line with previous work [16, 21, 20], we also observe that
visualizations of the augmented network tend to cover the
object surface more than those of the baseline model.

4.3. Joint vs. non-joint training

We then thoroughly tested the necessity of joint training
to make occlusion augmentation effective. We trained net-
works with Hide-and-Seek occlusions without joint training
by introducing another hyper-parameter pkeep image that de-
termines whether an image is left completely unoccluded
(see Section 3 for more details). We train these net-
works with pkeep image = {0.0, 0.1, . . . , 1.0} and pkeep patch =
{0.5, 0.6, . . . , 0.9}. We then compare those networks with
our baselines and our jointly trained networks from Table 1.
If joint training is not strictly necessary, we would expect



Figure 5. Joint vs. Non-Joint Training on ResNet50. We show that joint training (i.e., same image occluded and unoccluded in a
mini-batch; red lines) is necessary to improve over baselines (dotted lines) compared to leaving an image unoccluded randomly (pkeep image).
All plots except the bottom right one show ResNet50 baselines and Hide-and-Seek (H&S) joint and non-joint training for a given pkeep patch

as pkeep image varies. The bottom right plot compares H&S joint and non-joint training for pkeep image = 0.5 as pkeep patch varies.

our non-jointly trained networks to beat the baselines.
Figure 5 shows that this is not the case. Overwhelming,

the non-jointly trained networks (green lines) perform worse
than our baselines (dotted lines). While we might expect
that when pkeep patch = 0, that is, when images are always
occluded and thus the training domain might be too different
from the test domain, it is surprising that even when showing
full images half of the time (pkeep patch = 0.5), we do not see
an improvement. This suggests that that seeing an image
occluded and unoccluded in the same batch is necessary
for occlusion augmentation to work well. Our finding are
consistent with [3]’s observation that Cutout did not improve
ImageNet classification performance.

We also briefly explored finetuning models on full images
after they have been trained on exclusively occluded images
but did not see an improvement over baselines.

4.4. Saliency-based occlusions

Experiment set-up. For AlexNet, VGG16, and VGG16-
BN, we train networks with occlusions based on [12]’s
saliency maps at the following layers (post-ReLU but pre-
pooling): conv3, conv4, and conv55. For ResNet50, we train
networks on saliency maps on the max pool before the first
block and on the very first convolutional layers in the first,
second, and third blocks before batch normalization. Given

5For VGG16(-BN), convX refers to the last convolutional layer in the
X-th block.

S =56 S =84 S =112
N top-1 top-5 top-1 top-5 top-1 top-5

1 57.32 79.58 57.24 79.65 57.32 79.66
2 57.49 79.67 57.22 79.61 57.03 79.32
4 57.32* 79.57* 56.65 79.29 56.16 78.85
6 56.94 79.37 56.39 78.84 55.37 78.16
8 56.49 79.14 55.52 78.30 54.95 77.91

Table 3. Cutout for AlexNet (joint training). Averaged over 2
runs except where * (denotes 1 run); standard deviation mean
= 0.92 with range [0.00, 0.32].

VGG16-BN VGG16 AlexNet
top-1 top-5 top-1 top-5 top-1 top-5

w/o joint 74.11 91.81 71.75 90.45 56.39 79.19
w/ joint 74.95 92.31 72.37 90.91 57.34 79.72

conv3 75.01 92.41 72.48 90.86 57.42 79.71
conv4 74.96 92.40 72.27 90.87 57.38 79.74
conv5 75.06 92.39 72.38 90.90 57.33 79.70

Best from Tbl 1 75.02 92.38 72.41 90.86 57.36 79.65
Table 4. Saliency-based [12] occlusions for VGG16-BN,
VGG16, and AlexNet (joint training). Averaged over 3 runs;
stddev mean = 0.07 with range [0.03, 0.16]. Hyper-parameters
N = 1 occlusion, S = 56 side length, τ = 16 jitter are used.



ResNet50 top-1 top-5

w/o joint 76.40† 93.10†

w/ joint 76.40† 93.03†

maxpool 76.57 93.19
layer1.0.conv1 76.21 93.06
layer2.0.conv1 76.53 93.00
layer3.0.conv1 76.36 93.12

Best from Tbl 1 77.02† 93.45†

Table 5. Saliency-based occlusions for ResNet50 (joint training).
Results reported for 1 run (†denotes averaged over 3 runs). These
hyper-parameters were used: N = 1, S = 56, τ = 16.

a saliency heatmap, we extract a 56× 56 Cutout-like patch
that covers the most salient part of the image. We then jitter
the patch uniformly by τ ∈ [−16, 16] pixels.

Results. Table 4 and Table 5 show that the best results
from training jointly with saliency-based occlusions for all
networks except ResNet50 are consistently better (albeit by
a small margin) than the best results from training jointly
with stochastic Hide-and-Seek occlusions. Most notably, a
much smaller amount of saliency-based occlusion is needed
to yield the comparable improvements to Hide-and-Seek
occlusions (i.e., for VGG16-BN, occluding 6% of an image
using saliency is comparable to occluding 50% on average
using Hide-and-Seek). This is likely due to the fact that
the saliency-based occlusions should be covering the most
“important” parts of an image. Our saliency-based N = 1
occlusion of side length S = 56 is roughly comparable to
Hide-and-Seek with a 4 × 4 grid (G = 4, S = 56) and
pkeep patch = 15/16 = 0.94, that is, on average only one
56× 56 patch is occluded. It is also is directly comparable
with Cutout with the same hyper-parameters (N = 1, S =
56; see Table 2 and Table 3 for Cutout on ResNet50 and
AlexNet respectively).

The slim differences between results from different layers
suggests that occlusions based on [12]’s saliency method
are reasonably robust to layer choice. Saliency-based oc-
clusion also yields a lower mean standard deviation of 0.07
compared to 0.14 for Hide-and-Seek occlusions, due to the
significantly less stochastic nature of saliency-based occlu-
sion augmentation.

One limitation of our current approach is that we can ex-
tract one maximal patch, thereby limiting to a certain degree
the size of our occlusions, which would need to be larger
in order to match the effects of the best parameterizations
of the stochastic methods. This limitation is likely the rea-
son that results from saliency-based N = 1 occlusions on
ResNet50 do not beat the best stochastic occlusion results,
since a larger amount of occlusion is needed for Hide-and-
Seek (pkeep patch = 0.5) and Cutout (N = 6 for S = 56).

4.5. Comparison with other regularization methods

Experimental set-up. We compare our method with vari-
ants of Dropout [3] and primarily follow [3]’s protocol
(see Section 2 for more details). For Dropout [17], Spa-
tial Dropout [19], and DropBlock [3], we follow [3]’s
procedure and add dropout modules after every convolu-
tional layer in the third and fourth block of ResNet50. For
DropBlock, we also add its module to the skip connec-
tions in those blocks. For Dropout and Spatial Dropout,
we train ResNet50 networks without joint training using
pkeep prob ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, while for DropBlock,
we use pkeep prob ∈ {0.75, 0.80, 0.85, 0.90, 0.95} (pkeep prob
is analogous to pkeep patch). We also compare against label
smoothing [18] with fixed p = 0.1.

We deviate from [3] in that we train for 100 epochs using
a 30–60–90 epoch lr decay schedule (vs. their 300 epochs
using a 100–200–265 schedule) to compare fairly with our
method. We do not use a schedule to ease in the amount
of dropout for DropBlock, as [3] reported that DropBlock
without scheduling still yielded significant boosts over their
ResNet50 baseline. We expected that these two changes
would decrease the improvements observed in [3] but that
those improvements would still persist.

Results. Table 6 shows that all the variants of Dropout
methods under-performed our ResNet50 non-joint training
baseline, suggesting that they are sensitive to and require the
custom longer training schedule used in [3] in order to be
effective (see [3] for results with the longer training sched-
ule). Label smoothing also under-performed our occlusion
augmentation training.

4.6. Comparison with Batch Augmentation [5]

Lastly, we compare our joint training paradigm with batch
augmentation [5]. The key difference between batch aug-
mentation and joint training is that, for joint training, all
standard pre-processing occurs before image duplication; in
contrast, for batch augmentation, pre-processing occurs after
duplication. Thus, transformation from pre-processing are
identical in joint training but independent (i.e., different) in
batch augmentation. In all our previous results, we used joint
training (M = 2 copies).

Batch augment > joint training. Table 7 shows results
when we use batch augmentation to include stochastic Cutout
occlusions during training, with fixed CO hyper-parameters
N = 6, S = 56. The results for M = 2 in Table 7 improve
upon and are comparable to our joint training Cutout results
for N = 6, S = 56 in Table 2: 77.50% (top-1) and 93.63%
(top-5) for batch augmented Cutout (pkeep image = 0.56)

6pkeep image denotes the probability that an image copy is left unoc-
cluded.



top-1 (%) top-5 (%)
ResNet50 non-joint joint non-joint joint

baseline from Table 1 76.40 76.40 93.10 93.03

Dropout [17] (pkeep prob = 0.9) 76.34 76.41 93.02 93.10
Spatial Dropout [19] (pkeep prob = 0.9) 75.95 76.31 92.77 93.04
DropBlock [3] (pkeep prob = 0.95 & pkeep prob = 0.90†) 75.88 76.33 92.77 92.98

Label smoothing [18] (0.1) 76.64 76.26 93.25 93.11

Best H&S (p∗keep patch = 0.5) from Table 1 (ours) – 77.02 – 93.45
Best CO (N∗ = 6;S∗ = 84) from Table 2 (ours) – 77.25 – 93.48

Table 6. Comparison with other regularization methods. For Dropout variants, the best results from a search over several pkeep prob values
is reported. †For DropBlock, pkeep prob = 0.95 was the best for non-joint and p = 0.90 was best for joint.

JT bsl (Tbl 1) JT CO (Tbl 2) BA bs BA CO (pki = 0.0) BA CO (pki = 0.5)
M top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

2 76.40† 93.03† 77.17* 93.54* 77.27* 93.47* 77.50* 93.63* 77.50 93.61
4 – – – – 77.71* 93.79* 77.75 93.68 77.82 93.74

Table 7. Batch augment (BA) vs. joint training (JT) for Cutout (CO) on ResNet50. Averaged over 2 runs except where * (1 run) and
†(3 runs); stddev mean = 0.09 and range [0.02, 0.18] for 2-run results. Best results per row are in bold. CO hyper-parameters were S = 56
and N = 6. M = # copies of an image in a mini-batch. pki = pkeep image.

Batch Augment Dataset Augment Joint Training
M top-1 top-5 top-1 top-5 top-1 top-5

2 77.27 93.47 76.51 93.12 76.39 93.14
4 77.71 93.79 76.01 92.53 76.30 93.07

Table 8. Baseline comparisons with different kinds of augmen-
tation. Results are from 1 run. M = number of copies of an image
in a mini-batch for BA and JT and in one epoch of training for DA.

vs. 77.17% (top-1) and 93.54% (top-5) for joint training.
However, batch augmentation also significantly improves
its respective baseline; thus, relative improvement of batch-
augmented Cutout are smaller when compared to that of
jointly trained Cutout: For M = 2, is quite slim for top-1
(and non-existent for top-5) when using M = 4 copies.

No full images needed. Most notably, Cutout with
pkeep image = 0.0 achieves similar performance to that with
pkeep image = 0.5. This suggests that one can train a network
with images that are always occluded (i.e., without ever seen
a full, natural image) and achieve superior inference-time
performance on full images than standard training methods.

Baseline comparisons. Table 8 shows results when train-
ing baseline ResNet50 models with batch augmentation,
dataset augmentation, and joint training. Dataset augmenta-
tion iterates through the training set M times. The only dif-
ference between batch and dataset augmentation is that batch
augmentation ensures that all the copies of one image are in

the same mini-batch; in dataset augmentation, the copies of
one image are in distinct mini-batches. These results verify
that of [5] in showing the necessity of having image in the
same mini-batch to achieve superior performance.

5. Conclusion

We showed how to leverage occlusions as effective data
augmentation to improve ImageNet classification perfor-
mance. The primary insight from our work is using some
variant of batch augmentation [5] (such as our joint training
with an occluded and unoccluded copy of an image in the
same batch) is necessary to gain this improvement. This sug-
gests that further research on what is being learned during
joint training and more broadly batch augmentation [5] is
warranted. We also demonstrate training-time occlusions can
be a way to understand model’s upper bound for robustness
to occlusions generally. There is likely room to improve our
work here, particularly in exploring further the potential of
batch augmentation [5], in developing better saliency-based
approaches to occlusion augmentation, and in elucidating
further the interaction between and impact of dataset and
model complexity for effective occlusion augmentation. Fur-
ther research could also be done on other kinds of occlusions,
such as blur or random noise or even ignoring regions [9]. In
conclusion, in contrast to other regularization techniques that
require architectural changes, we present a simple paradigm
for making occlusions effective on ImageNet for sufficiently
capable models (e.g., ResNet50) that can be easily added
into existing training paradigms.
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168 C.2. There and Back Again: Revisiting Backpropagation Saliency Methods

C.2 There and Back Again: Revisiting Backprop-
agation Saliency Methods

The following paper was presented (virtually) at the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) at Seattle, WA, USA in 2020 (Re-
buffi et al., 2020).1

In Rebuffi et al., 2020, we make four contributions. First, introduce a novel
framework for understanding propagation-based attribution methods. Second, we
present a new attribution method called NormGrad that properly accounts for
the contributions of convolutional weights. Third, we systematically study the
effects of combining attribution heatmaps that were computed at different layers
in a network. Lastly, we introduce a novel technique based on meta-learning to
increase the class sensitivity of any propagation-based attribution method.

1For the appendix, see the full arXiv paper here: https://arxiv.org/abs/2004.02866

https://arxiv.org/abs/2004.02866
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Abstract

Saliency methods seek to explain the predictions of a
model by producing an importance map across each in-
put sample. A popular class of such methods is based on
backpropagating a signal and analyzing the resulting gra-
dient. Despite much research on such methods, relatively
little work has been done to clarify the differences between
such methods as well as the desiderata of these techniques.
Thus, there is a need for rigorously understanding the re-
lationships between different methods as well as their fail-
ure modes. In this work, we conduct a thorough analysis
of backpropagation-based saliency methods and propose a
single framework under which several such methods can be
unified. As a result of our study, we make three additional
contributions. First, we use our framework to propose Nor-
mGrad, a novel saliency method based on the spatial con-
tribution of gradients of convolutional weights. Second, we
combine saliency maps at different layers to test the ability
of saliency methods to extract complementary information
at different network levels (e.g. trading off spatial resolu-
tion and distinctiveness) and we explain why some methods
fail at specific layers (e.g., Grad-CAM anywhere besides
the last convolutional layer). Third, we introduce a class-
sensitivity metric and a meta-learning inspired paradigm
applicable to any saliency method for improving sensitivity
to the output class being explained.

1. Introduction

The adoption of deep learning methods by high-risk ap-
plications, such as healthcare and automated driving, gives
rise to a need for tools that help machine learning prac-
titioners understand model behavior. Given the highly-
parameterized, opaque nature of deep neural networks, de-
veloping such methods is non-trivial, and there are many
possible approaches. In the basic case, even the predictions
of the model itself, either unaltered or after being distilled
into a simpler function [11, 3], can be used to shed light on

∗indicates equal contribution

its behaviour.
Saliency is the specific branch of interpretability con-

cerned with determining not what the behaviour of a model
is for whole input samples, but which parts of samples con-
tribute the most to that behaviour. Thus by definition, de-
termining saliency - or attribution - necessarily involves re-
versing the model’s inference process in some manner [22].
Propagating a signal from the output layer of a neural net-
work model back to the input layer is one way of explicitly
achieving this.

The number of diverse works based on using signal back-
propagation for interpretability in computer vision [39, 29,
4, 40] is testimony to the power of this simple principle.
Typically, these techniques produce a heatmap for any given
input image that ranks its pixels according to some metric of
importance for the model’s decision. Inspired by the work
of [1], we propose to delve deeper into such methods by
discussing some of the similarities, differences and poten-
tial improvements that can be illustrated.

We begin with presenting a framework that unifies sev-
eral backpropagation-based saliency methods by dividing
the process of generating a saliency map into two phases:
extraction of the contribution of the gradient of network
parameters at each spatial location in a particular network
layer, and aggregation of such spatial information into a 2D
heatmap. GradCAM [29], linear approximation [18] and
gradient [31] can all be cast as such processes. Noting that
no appropriate technique has yet been proposed for properly
aggregating contributions from convolutional layers, we in-
troduce NormGrad, which uses the Frobenius norm for ag-
gregation. We introduce identity layers to allow for the gen-
eration of saliency heatmaps at all spatially-grounded lay-
ers in the network (i.e. even after ReLU), since NormGrad
computes saliency given a parameterised network layer.

We conduct a thorough analysis of backpropagation-
based saliency methods in general, with evaluation based on
utilising saliency heatmaps for weak localisation. Notably,
we conduct an investigation into simple techniques for com-
bining saliency maps taken from different network layers
- in contrast to the popular practice of computing maps at
the input layer [31] - and find that using a weighted aver-
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age of maps from all layers consistently improves perfor-
mance for several saliency methods, compared to taking the
single best layer. However, not all layers are equally im-
portant, as we discover that models optimised on datasets
such as ImageNet [28] and PASCAL VOC [7] learn fea-
tures that become increasingly class insensitive closer to-
wards the input layer. This provides an explanation for why
Grad-CAM [29] produces unmeaningful saliency heatmaps
at certain layers earlier than the last convolutional layer, as
the sensitivity of the gradient to class across spatial loca-
tions is eliminated by Grad-CAM’s spatial gradient averag-
ing, meaning such layers are devoid of class sensitive sig-
nals from which to form saliency heatmaps.

Finally, building off [22, 1], we introduce a novel metric
for quantifying the class sensitivity of a saliency method,
and present a meta-learning inspired paradigm that in-
creases the class sensitivity of any method by adding an in-
ner SGD step into the computation of the saliency heatmap.

2. Related work
Saliency methods. Our work focuses on
backpropagation-based saliency methods; these tech-
niques are computationally efficient as they only require
one forward and backward pass through a network. One
of the earliest methods was [31] which visualised the
gradient at the input with respect to an output class being
explained. Several authors have since proposed adaptations
in order to improve the heatmap’s visual quality. These
include modifying the ReLU derivatives (Deconvnet [39],
guided backprop [34]) and averaging over randomly
perturbed inputs (SmoothGrad [33]) to produce masks with
reduced noise. Several works have explored visualizing
saliency at intermediate layers by combining information
from activations and gradients, notably CAM [41], Grad-
CAM [29], and linear approximation (a.k.a. gradient ×
input) [18]. Conservation-preserving methods (Excitation
Backprop [40], LRP [4], and DeepLIFT [30]) modify the
backward functions of network layers in order to “preserve”
an attribution signal such that it sums to one at any point
in the network. Reference-based methods average over
attributions from multiple interpolations [35] between the
input and a non-informative (e.g. black) reference input
or use a single reference input with which to compare a
backpropagated attribution signal [30].

Although we focus on backpropagation-based methods,
another class of methods studies the effects that perturba-
tions on the input induce on the output. [39] and [26] gen-
erate saliency maps by weighting input occlusion patterns
by the induced changes in model output. [10, 9, 15] learn
for saliency maps that maximally impact the model, and [5]
trains a model to predict effective maps. LIME [27] learns
linear weights that correspond to the effect of including or
excluding (via perturbation) different image patches in an

image. Perturbation-based approaches have also been used
to perform object localisation [32, 37, 36].

Assessing and unifying saliency methods. A few works
have studied if saliency methods have certain desired sen-
sitivities (e.g., to specific model weights [1] or the out-
put class being explained [22]) and if they are invariant
to unmeaningful factors (e.g., constant shift in input inten-
sity [17]). [22] showed that gradient [31], deconvnet [39],
and guided backprop [34] tend to produce class insensitive
heatmaps. [1] introduced sanity check metrics that measure
how sensitive a saliency method is to model weights by re-
porting the correlation between a saliency map on a trained
model vs. a partially randomized model.

Other works quantify the utility of saliency maps for
weak localization [40, 10] and for impacting model pre-
dictions. [40] introduced Pointing Game, which measures
the correlation between the maximal point extracted from
a saliency map with pixel-level semantic labels. [10] ex-
tracts bounding boxes from saliency maps and measures
their agreement with ground truth bounding boxes. [38]
evaluates attribution methods using relative feature impor-
tance. [24] proposes a dataset designed for measuring vi-
sual explanation accuracy. [4, 26, 15] present variants of a
perturbation-based evaluation metric that measures the im-
pact of perturbing (or unperturbing for [15]) image patches
in order of importance as given by a saliency map. How-
ever, these perturbed images are outside the training do-
main; [13] mitigates this by measuring the performance of
classifiers re-trained on perturbed images (i.e., with 20% of
pixels perturbed).

To our knowledge, the only work that has been done
to unify saliency methods focuses primarily on “invasive”
techniques that change backpropagation rules. The α-LRP
variant [4] and Excitation Backprop [40] share the back-
propagation rule, and DeepLIFT [30] is equivalent to LRP
when 0 is used as the reference activation throughout a net-
work. [20] unifies a few methods (e.g., LIME [27], LRP [4],
DeepLIFT [30]) under the framework of additive feature at-
tribution.

3. Method
Preliminaries. Consider a training set D of pairs (x,y)
where x ∈ R3×H×W are (color) images and y ∈
{1, . . . , C} their labels. Furthermore, let y = Φθ(x) be
the output of a neural network model whose parameters θ
are optimized using the cross-entropy loss ` to predict la-
bels from images.

3.1. Extract & Aggregate framework

In most methods, the saliency map is obtained as a func-
tion of the network activations, computed in a forward pass,



and information propagated from the output of the net-
work back to its input using the backpropagation algorithm.
While some methods modify backpropagation in some way,
here we are interested in those, such as gradient, linear ap-
proximation, and all variants of our proposed NormGrad
saliency method, that do not.

In order to explain these “non-invasive” methods, we
suggest that their saliency maps can be interpreted as a mea-
sure of how much the corresponding pixels contribute to
changing the model parameters during a training step. We
then propose a principled two-phase framework capturing
this idea. In the extraction phase, a method isolates the con-
tribution to the gradient from each spatial location. We use
the fact that the gradient of spatially shared weights can be
written as the sum over spatial locations of a function of the
activation gradients and input features. In the aggregation
phase, each spatial summand is converted into a scalar using
an aggregation function, thus resulting in a saliency map.

Algorithm 1 Extract & Aggregate

1. Extract. Compute spatial contributions to the summation
of the gradient of the weights.

•Choose a layer whose parameters are shared spatially (lay-
ers from table 1).

• Alternatively, insert an identity layer (section 3.1.2) at the
targeted location.

2. Aggregate. Transform these spatial contributions into
saliency maps using an aggregation function.

• Norm: NormGrad (ours)

• Voting/Summing: linear approximation [18]

• Filtering: GradCAM [29], selective NormGrad (ours)

•Max: Gradient backprogation [31]

3.1.1 Phase 1: Extract

We first choose a target layer in the network at which we
plan to compute a saliency map. Assuming that the network
is a simple chain1, we can write L = ` ◦ Φ = h ◦ kw ◦ q,
where kw is the target layer parameterised by w, h is the
composition of all layers that follow it (including loss `),
and q is the composition of layers that precede it. Then,
xin = q(x) ∈ RK×H×W denotes the input to the tar-
get layer, and its output is given by xout = kw(xin) ∈
RK′×H′×W ′ .

1Other topologies are treated in the same manner, but the notation is
more complex.

Layer Spatial contribution Size at each location
Bias goutu vector: K ′

Scaling goutu � xinu vector: K ′

Conv N ×N goutu xinu,N×N
> matrix: K ′ ×N2K

Table 1. Formulae and sizes of the spatial contributions to the gra-
dient of the weights for layers with spatially shared parameters. �
denotes the elementwise product and xin

u,N×N is the N2K vector
obtained by unfolding the N×N patch around the target location.

Convolutional layers with general filter shapes. For
convolutions with an N × N kernel size, we can re-write
the convolution using the matrix form:

Xout = WXin
N×N (1)

where Xout ∈ RK′×HW and W ∈ RK′×N2K are the out-
put and filter tensors reshaped as matrices and Xin

N×N ∈
RN2K×HW is a matrix whose column xinu,N×N ∈ RN2K

contains the unfolded patches at location u of the input ten-
sor to which filters are applied.2 Then, the gradient w.r.t. the
filter weights W is given by

dL

dW
=
∑

u∈Ω

d

dW

〈
goutu ,Wxinu,N×N

〉
=
∑

u∈Ω

goutu xinu,N×N
>
,

(2)
where goutu = dh/dxoutu is the gradient of the “head” of
the network. Thuis, for the convolutional layer case, the
spatial summand is an outer product of two vectors; thus,
the spatial contribution at each location to the gradient of
the weights is a matrix of size K ′ ×N2K.

Other layer types. Besides convolutional layers, bias and
scaling layers also share their parameters spatially. In mod-
ern architectures, these are typically used in batch normal-
ization layers [14]. We denote b,α ∈ RK as the parameters
for the bias and scaling layers respectively. They are defined
respectively as follows:

xoutku = xinku + bk, xoutku = αkx
in
ku.

Then, the gradients w.r.t. parameters are given by

dL

db
=
∑

u∈Ω

goutu ,
dL

dα
=
∑

u∈Ω

goutu � xinu . (3)

where � is the elementwise product. For these two types of
layer, the spatial summand is a vector of sizeK, the number
of channels. Table 1 summarizes the spatial contributions to
the gradients for the different layers.

2This operation is called im2row in MATLAB or unfold in PyTorch.



3.1.2 Virtual identity layer

So far, we have only extracted spatial gradient contribu-
tions for layers that share parameters spatially. We will now
extend our summand extraction technique to any location
within a CNN by allowing the insertion of a virtual iden-
tity layer at the target location. This layer is a conceptual
construction that we introduce to derive in a rigorous and
unified manner the equations employed by various methods
to compute saliency.

We are motivated by the following question: if we were
to add an identity operator at a target location, how should
this operator’s parameters be changed? A virtual identity
layer is a layer which shares its parameters spatially and
is set to the identity. Hence, it could be any of the layer
from table 1, like a bias or a scaling layer; then, bk = 0 or
ck = 1 respectively for k ∈ {1, . . . ,K}. It could also be a
N ×N convolutional layer with filter bank W ∈ RK×N2K

such thatwkk′ij = δk,k′δi,0δj,0, where δa,b is the Kronecker
delta function3, for (i, j) ∈ {−N−1

2 , . . . , N−1
2 }.

Because of the nature of the identity, this layer does not
change the information propagated in either the forward or
backward direction. Conceptually, it is attached to the part
of the model that one wishes to inspect as shown in fig. 1.
This layer is never “physically” added to the model (i.e., the
model is not modified); its “inclusion” or “exclusion” sim-
ply denotes whether we are using input or output activations
(xin or xout). Indeed the backpropagated gradient gout at
the output of the identity as shown in fig. 1 is the gradient
that would have been at the output of the layer preceding
the identity. This construction allows to examine activations
and gradients at the same location (e.g., xout and gout) as
most existing saliency methods do. We now can use the
formulae defined in section 3.1.1 when analyzing the gradi-
ent of the weights of this identity layer. For example, if we
consider an identity scaling layer, the spatial contribution
would be goutu � xoutu . Or, for a N × N identity convolu-
tional layer, it would be goutu xoutu,N×N

>.

IDxin xout gout

Network layer Virtual identity

Figure 1. Virtual identity. Here, we visualize inserting an iden-
tity after a specific layer in the network for saliency computation
purposes. The gradient coming from later stages of the network
that is the gradient at output of the network layer, is now also the
gradient at the output of the identity, gout.

3Kronecker delta function: δa,b = 1 if a = b; otherwise, δa,b = 0.

3.1.3 Phase 2: Aggregate

Following the extraction phase (section 3.1.1), we have the
local contribution at each spatial location to the gradients of
either an existing layer or a virtual identity layer. Each spa-
tial location is associated with a vector or matrix (table 1).
In this section, we describe different aggregation functions
to map these vectors or matrices to a single scalar per spatial
position. We drop the spatial location u in the notations.

Understanding existing saliency methods. One possible
aggregation function is the sum of the elements in a vector.
When combined with a virtual scaling identity layer (sec-
tion 3.1.2), we obtain the linear approximation method [18]:∑
k g

out
k xoutk .The contributions from the scaling identity

encode the result of channels changing (after the gradient is
applied) at each location; thus, the sum aggregation func-
tion acts as a voting mechanism. The resulting saliency map
highlights the locations that would be most impacted if fol-
lowing through with the channel updates.

Aggregation functions can also be combined with
element-wise filtering functions (e.g., the absolute value
function). Another aggregation function takes the max-
imum absolute value of the vector: maxabs(x) =
maxk|xk|. If we combine a virtual bias identity layer in
phase 1, which gives gout as the spatial contribution, with
the maxabs function for aggregation, we obtain at each spa-
tial location the gradient [31] method: maxk|goutk |.

As for CAM [41] and Grad-CAM [29], we cannot di-
rectly use the spatial contributions extracted at each loca-
tion because they spatially average gout.4 However, for
architectures that use global average pooling followed af-
ter their convolutional layers (e.g., ResNet architectures),
goutu = ḡout. Then, CAM and Grad-CAM and CAM
can be viewed as combining a virtual scaling identity layer
from phase 1 with summing and positive filtering (i.e.,
filter+(x) = (x)+) functions for aggregation.

NormGrad. The sum and max functions have clear in-
terpretations when using bias or scaling identity layers;
however, they cannot be easily transported to convolutional
identity layers as interactions between input channels can
vary depending on the output channel and are represented
as a matrix, not as a vector as are the case for scaling and
bias layers. Thus, we would like to have an aggregation
function that could be used to aggregate any type of spatial
contribution, regardless of its shape.

Using the norm function satisfies this criterion, for ex-
ample the L2 norm when dealing with vectors and the
Frobenius norm for matrices. We note that the matrices ob-
tained at each location for convolutional layers are the outer

4Because CAM global average pooling + one fully connected layer,
gout is equal to the fully connected weights.



Phase 1 Phase 2 Saliency map
Bias IDL Max maxk g

out
k

Scaling IDL Sum
∑
k g

out
k xoutk

Scaling IDL F + N ‖(gout � xout)+‖
Conv 1× 1 IDL Norm ‖gout‖‖xout‖
Real Conv 3× 3 Norm ‖gout‖‖xin3×3‖

Table 2. Combining layers and aggregation functions for
saliency. goutk and xout

k are tensor slices for channel k and contain
only spatial information. IDL denotes an identity layer. F + N is
positive filtering + norm. From top to bottom, the rows correspond
to the following saliency methods: 1., gradient, 2., linear approxi-
mation, 3., NormGrad selective, 4., NormGrad, and 5., NormGrad
without the virtual identity trick.

products of two vectors. For such matrices, the Frobenius
norm is equal to the product of the norms of the two vectors.
For example, for an existing 1 × 1 convolutional layer, we
consider the saliency map given by ‖gout‖‖xin‖. We call
this class of saliency methods derived by using norm as an
aggregation function, “NormGrad”.

Saliency maps from the NormGrad outlined above are
not as class selective as other methods because they high-
light the spatial locations that contribute the most to gra-
dient of the weights, both positively and negatively. One
way to introduce class selectivity is to use positive filtering
before applying the norm. If we apply norm and positive
filtering aggregation to a scaling identity layer, the resulting
saliency map is given by ‖(gout�xout)+‖. Throughout the
rest of the paper, we call this variant “selective NormGrad”.

4. Experiments

In this section we quantitatively and qualitatively evalu-
ate the performance of a large number of backpropagation-
based saliency methods. Code for our framework is released
at http://github.com/srebuffi/revisiting_
saliency. Additional experiments such as image cap-
tioning visualizations are included in the appendix.

Experimental set-up. Unless otherwise stated, saliency
maps are generated on images from either the PASCAL
VOC [7] 2007 test set or the ImageNet [6] 2012 valida-
tion set for either VGG16 [31] or Resnet50 [12]. For
PASCAL VOC, we use a model pre-trained on ImageNet
with fine-tuned fully connected layers on PASCAL VOC.
We use [9]’s TorchRay interpretability package to generate
saliency methods for all other saliency methods besides our
NormGrad and meta-saliency methods as well as to evaluate
saliency maps on [40]’s Pointing Game (see [40] for more
details). For all correlation analysis, we compute the Spear-
man’s correlation coefficient [23] between saliency maps
that are upsampled to the input resolution: 224× 224.

4.1. Justifying the virtual identity trick.

In order to justify our use of the virtual identity trick, we
compare NormGrad saliency maps generated at 1 × 1 and
3 × 3 convolutional layers both with and without the vir-
tual identity trick (4th and 5th rows respectively in table 2)
for VGG16 and ResNet50. We first computed the correla-
tions between saliency maps generating with and without
the virtual identity trick. We found that the mean corre-
lation across N = 50k ImageNet validation images was
over 95% across all layers we tested. We also evaluated
their performance on the Pointing Game [40] and found
that the mean absolute difference in pointing game accuracy
was 0.53% ± 0.62% across all layers we tested (see supp.
for more details and full results). This empirically demon-
strates that using the virtual identity trick closely approxi-
mates the behavior of calculating the spatial contributions
for the original convolutional layers.

4.2. Combining saliency maps across layers.

Training linear classifiers on top of intermediate rep-
resentations is a well-known method for evaluating the
learned features of a network at different layers [2]. This
suggests that saliency maps, too, may have varying levels
of meaningfulness at different layers.

We explore this question by imposing several weight-
ing methods for combining the layer-wise saliency maps of
ResNet50 and VGG16 and measuring the resulting perfor-
mance on PASCAL VOC Pointing Game on both the “diffi-
cult” and “all” image sets. To determine the weight γj for a
given layer j out of J layers in a network we use:

1. Feature spread. Given the set of feature activations
at layer j, xi for i ∈ M input images sampled
uniformly across classes, compute the spatial mean
x̄i =

∑
u∈Ω x

i
u. γj = 1

M

∑M
i=1 |x̄i − x̄µ| where

x̄µ = 1
M

∑M
i=1 |x̄i|.

2. Classification accuracy. Given the set of feature ac-
tivations at layer j, xi for i ∈ M input images sam-
pled uniformly across classes, train a linear layer Ψ
using image labels yi. γj = 1

M

∑M
i=1 δΨ(xi),yi where

δΨ(xi),yi = 1 if Ψ(xi) = yi, 0 otherwise.

3. Linear interpolation. γj = j
J .

4. Uniform. γj = 1
J .

To obtain a combined saliency mapM from mapsmj from
each layer j, the weights are normalised and applied either
additively, M =

∑J
j=0 γj ·mj , or with a product, M =∏J

j=0m
γj
j (see fig. 2 for visualization).

Table 3 shows that weighted saliency maps produce the
best overall performance in all four key test cases, which
is surprising as there were only four weight schemes tested
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Figure 2. Saliency maps at different network depths and as a weighted combination. Linear approximation vs. selective NormGrad
saliency maps of VGG16 on VOC2007. The first 5 images of each row correspond to different depths whereas the last one is a weighted
product combination (using classification accuracy weights) of the first saliency maps. We observe that the weighted version produces
more fined grained maps for both methods.

All Difficult
Resnet50 VGG16 Resnet50 VGG16
b.s. b.w. b.s. b.w. b.s. b.w. b.s. b.w.

CEB 90.7 88.6 82.1 78.2 82.2 82.2 67.0 65.2
EB 84.5 83.1 77.5 75.7 71.5 71.3 57.8 56.1
GC 90.3 90.5 86.6 80.6 82.3 82.6 74.0 67.8
Gd 83.9 83.3 86.6 82.7 70.3 69.4 66.4 67.4
Gds 80.0 77.4 76.8 77.2 62.9 59.5 57.9 59.4
Gui 82.3 81.0 75.8 74.4 67.9 63.4 53.0 51.6
LA 90.2 91.2 86.4 86.9 81.9 83.8 74.5 77.4
NG 84.6 83.5 81.9 81.8 72.2 70.2 64.8 64.6
sNG 87.4 88.7 86.0 86.8 77.0 79.1 72.6 74.5

Table 3. Pointing game results on VOC07. b.s. and b.w. stand
for best single layer and best weighted combination. (C)EB: (Con-
trastive) Excitation Backprop, GC: GradCAM, Gd(s): Gradient
(sum), Gui: guided backprop, LA: linear approximation, (s)NG:
(selective) NormGrad.
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Figure 3. Select Pointing Game results. Results for ResNet50
on VOC07 at different network depths (A: all images; D: difficult
subset). Grad-CAM performs worse at every layer except the last
conv layer and lower than pointing at the center (all: 69.6%; diff:
42.4%) at most layers.

(in addition to best single layer), none of which were ex-
plicitly optimised for use with saliency maps. Our re-
sults strongly indicate that linear approximation in partic-
ular benefits from combining maps from different layers,
and linear approximation with layer combination consis-
tently produces the best performance overall and beats far
more complex methods at weak localisation using a single
forward-backward pass (see supp. for full results).

Note that the feature spread and classification accuracy
metrics can both be used as indicators of class sensitiv-
ity (section 4.3). This is because if feature activations are
uniform for images sampled across classes, it is not pos-
sible for them to be sensitive to - or predictive of - class,
and the classification accuracy metric is an explicit quanti-
sation of how easily features can be separated into classes.
We observe from the computed weights that both metrics
generally increase with layer depth (see supp.).
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conv2 conv3 conv4 conv5

Figure 4. Grad-CAM failure mode. Grad-CAM saliency maps
w.r.t. “tiger cat” at different depths of VGG16. Grad-CAM only
works at the last conv layer (rightmost col).

Explanation of Grad-CAM failure mode. Figure 4
showed qualitatively that Grad-CAM does not produce
meaningful saliency maps at any layer except the last convo-
lutional layer, which is confirmed by Grad-CAM’s Pointing
Game results at earlier layers. Class sensitivity - as mea-
sured by our weighting metrics - increasing with layer depth
offers an explanation for this drop in performance. Since



Grad-CAM spatially averages the backpropagated gradi-
ent before taking a product with activations, each pixel lo-
cation in the heatmap receives the same gradient vector
(across channels) irrespective of the image content con-
tained within its receptive field. Thus, if the activation map
used in the ensuing product is also not class selective - fir-
ing on both dogs and cats for example, fig. 4 - the saliency
map cannot be. On the other hand, methods that do not
spatially average gradients such as NormGrad (fig. 3) can
rely on gradients that are free to vary across the heatmap
with underlying class, increasing the class sensitivity of the
resulting saliency map.

4.3. An explicit metric for class sensitivity
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Figure 5. Class sensitivity with and without meta-saliency. Min
class saliency maps that use meta-saliency (row 2 and 4, right col)
are less informative than those that don’t use meta-saliency (rows
1 and 3, right col). Class 1 is the ground truth class (fence), class 2
is the maximally predicted class (Cardigan Welsh corgi), min class
is the minimally predicted class (black widow spider).

[22] qualitatively shows that early backprop-based meth-
ods (e.g., gradient, deconvnet, and guided backprop) are not
sensitive to the output class being explained by showing that
saliency maps generated w.r.t. different output classes and
gradient signals appear visually indistinguishable. Thus,
similar to [1], we introduce a sanity check to measure a
saliency method’s output class sensitivity. We compute the
correlation between saliency maps w.r.t. to output class pre-
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Figure 6. Class sensitivity of saliency methods. This plot shows
the correlation between VGG16 saliency maps computed w.r.t. to
the maximally and minimally predicted class (closer to zero is bet-
ter).
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Figure 7. Meta-saliency improves class sensitivity for all
saliency methods. Using meta-saliency yields weaker correla-
tions between the saliency maps w.r.t. the maximally and mini-
mally predicted output class compared to not using meta-saliency
(lower is better).

dicted with highest confidence (max class) and that pre-
dicted with lowest confidence (max and min class respec-
tively) for N = 1000 ImageNet val. images (1 per class).

We would expect saliency maps w.r.t. the max class to
be visually salient while those w.r.t. to the min class to be
uninformative (because the min class is not in the image).
Thus, we desire the correlation scores to be close to zero.

Figure 6 shows results for various saliency methods. We
observe that excitation backprop and guided backprop yield
correlation scores close to 1 for all layers, while contrastive
excitation backprop yields scores closest to 0. Furthermore,
methods using sum aggregation (e.g., gradient [sum], lin-
ear approx, and Grad-CAM) have negative scores (i.e., their
max-min-class saliency maps are anti-correlated). This is
because sum aggregation acts as a voting mechanism; thus,
these methods reflect the fact that the network has learned
anti-correlated relationships between max and min classes.

4.4. Meta-saliency analysis

As a general method for improving the sensitivity of
saliency heatmaps to the output class used to generate the



gradient, we propose to perform an inner SGD step before
computing the gradients with respect to the loss. This way
we can extend any saliency method to second order gradi-
ents. This is partly inspired by the inner step used in, for
example, few shot learning [8] and architecture search [19].
We want to minimize:

L(θ, x) = `(θ − ε∇θ`(θ, x), x). (4)

We take ε � 1 to use a Taylor expansion of this loss at θ
and we now have the resulting approximated loss:

L(θ, x) ≈ `(θ, x)− ε‖∇θ`(θ, x)‖2. (5)

As done in the previous section, we can now take the gradi-
ent of the loss with respect to the parameters θ:

∇θL(θ, x) ≈ ∇θ`(θ, x)− 2ε∇2
θ`(θ, x)∇θ`(θ, x). (6)

Using a finite difference scheme of step h as in [25], we can
approximate the hessian-vector product by:

∇2
θ`(θ, x)∇θ`(θ, x) =

∇θ`(θ, x)−∇θ−`(θ−, x)

h
+O(h).

where θ− = θ − h∇θ`(θ, x). We chose on purpose a back-
ward finite difference such that two terms cancel each other
when taking h = 2ε and we get:

∇θL(θ, x) ≈ ∇θ′`(θ′, x).

where θ′ = θ−2ε∇θ`(θ, x) corresponds to one step of SGD
of learning rate 2ε. We notice that if we take ε→ 0, this for-
mula boils back down to the original gradient of the weights
without meta step. We further note that this meta saliency
approach only requires one more forward-backward pass
compared to usual saliency backpropagation methods.

Conversely, if we would like to get an importance map
that highlights the degradation of the model’s performance,
we should add an inner step with gradient ascent within
the loss. Hence by minimizing the resulting loss −`(θ +
ε∇θ`(θ, x), x), we get the same formula for the gradients
of the weights but with θ′ = θ + 2ε∇θ`(θ, x).

We hypothesize that applying meta-saliency to a saliency
method should decrease correlation strength because allow-
ing the network to update one SGD step in the direction of
the min class should “destroy” the informativeness of the
resulting saliency map. We use a learning rate ε = 0.001
for the class sensitivity quantitative analysis. Figure 5
shows qualitatively that this appears to be the case: with-
out meta-saliency, selective NormGrad and linear approx-
imation yield max (class 2) and min class heatmaps that
are highly positively and negatively correlated respectively.
However, when meta-saliency is applied, the min class
saliency map appears more random. Figure 7 shows results
comparing the max-min class correlation scores with and

without meta-saliency. These results demonstrate that meta-
saliency decreases max-min class correlation strength for
nearly all saliency methods and suggest that meta-saliency
can increase the class sensitivity for any saliency method.

4.5. Model weights sensitivity

[1] shows that some saliency methods (e.g., Guided
Backprop in particular) are not sensitive to model weights
as they are randomized in a cascading fashion from the end
to the beginning of the network. Figure 8 shows qualita-
tively that, by the late conv layers, saliency maps for lin-
ear approximation and selective NormGrad are effectively
scrambled (top two rows). It also highlights that, because
meta-saliency increases class selectivity and is allowed to
take one SGD in the direction of the target class, it takes
relatively longer (i.e., more network depth) to randomize a
meta-saliency heatmap (bottom row and see appendix).
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Figure 8. Model weights sensitivity. Sanity check by randomiz-
ing VGG16 model weights in a cascading fashion for the “Irish
terrier” image from [1]. Top row: selective NormGrad, middle
row: linear approximation, bottom row: linear approximation with
meta-saliency (lower correlation with orig heatmap [leftmost col]
is better). All methods look random after conv4 3. By compar-
ing the last two rows at conv5 3, we see the that meta-saliency
enforces more class sensitivity than the non-meta variant.

5. Conclusions

We introduced a principled framework based on the con-
tribution of each spatial location to the weights’ gradient.
This framework unifies several existing backpropagation-
based methods and allowed us to systematically explore the
space of possible saliency methods. We use it for example
to formulate NormGrad, a novel saliency method. We also
studied how to combine saliency maps from different layers,
discovering that it can consistently improve weak localiza-
tion performance and produce high resolution maps. Fi-
nally, we introduced a class-sensitivity metric and proposed
meta-saliency, a novel paradigm applicable to any existing
method to improve sensitivity to the target class.
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