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What do we mean when we say “interpretability”?



3

When is interpretability desirable?
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When is interpretability desirable?

1. More emphasis in sensitive domains 
2. Less emphasis given historical performance 
3. Less emphasis if improving interpretability incurs 

other costs
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What are desiderata for interpretability research?
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Desiderata for Interpretability Research

1. Trust 
• still subjective 
• “well-understood” or “confidence-giving” 
• “how often a model is right” + “for which 

examples is it right”   
2. Causality 

• “does the model learn causal relations?” 
3. Transferability 

• “does the model generalize?”  
 

4. Informativeness 
• “what information does can this model provide to 

human decision makers?” 
5. Fair and Ethical Decision Making 

• “can we produce interpretations by which to 
assess if automated decisions conform to ethical 
standards?” 

• “right to explanation” — EU GDPR

[Lipton, ICML WHI 2016]
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What has interpretability research focused on thus far?

See white paper.
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1. Explaining a specific prediction

• “local explanation” 
• What part of the input is responsible for the model’s 

prediction? Attribution maps. 
• Which training examples are are responsible for the 

model’s prediction? Attribution to data points. 
• Disadvantage: Only explains local behavior around a a 

given “point”
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2. Explaining global model behavior

• “transparency” 
• Can we construct human-understandable 

representations of the model’s global behavior? 
Model {distillation,approximation, 
compression}. 

• What properties does a component of the model 
have? How does a component of a model functionally 
work? “Science of X.”
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3. Building more interpretable models

• Related to model approximation 
• Disadvantage: No consensus yet on appropriate 

“interpretable” models
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4. Visualization tools

• Static 
• input/output/intermediate representation 
• e.g, t-SNE, feature visualization 

• Interactive 
• dashboards, explanations, interaction with model



Case study: Attribution maps
Evolution of methods and 
benchmarks
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Attribution

Where is the model looking?

c1 c2 c3 c4 c5 f6 f7 f8 dog

?
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Popular Methods



Combine network activations and gradients
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Backpropagation

Fast, but difficult to characterize

[Simonyan et al., ICLR Workshop 2014; Selvaraju et al., ICCV 2017]      
[Mahendran and Vedaldi, ECCV 2016; Adebayo et al., NeurIPS 2018] 

Input Gradient Grad-CAM



1. Gradient 
[Simonyan et al., 2014] 
 
 
def relu_backward(x, dx):
return (x > 0) * dx 

2. DeConvNet 
[Zeiler & Fergus, 2014] 
 
 
def relu_backward(x, dx):
return (dx > 0) * dx  

3. Guided Backprop  
[Springenberg et al., 2015] 
 
 
def relu_backward(x, dx):
return ((dx > 0) * (x > 0) * 
dx)
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Backprop-based Methods: Improving the Gradient max
dfc(x)

dx

Evolution to Improve Visual Quality
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Backdrop-based Methods: Mitigate “gradient saturation”

Gradient * Input 

 

Integrated Gradients 
[Sundararajan et al., 2017] 

 

* integrate over different intensities 
* requires choice of  

SmoothGrad [Smilkov et al., 2017] 

 

* average away the noise

x ⊙
dfc(x)

dx
̂Sc(x) = (x − x̄) × ∫

1

0

∂Sc(x̄ − α(x − x̄)
∂x

dα

x̄

̂Sc(x) =
1
n

n

∑ Sc(x + 𝒩(0,σ2))
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Backdrop-based Methods: + Activations

Class Activation Map (CAM) [Zhou et al., 2016] 

 
* Requires specific architecture: GAP + FC after convs  

Grad-CAM [Selvaraju et al., 2017] 

Generalization of CAM for any architecture 
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Backdrop-based Methods: Conservation Principle (a.k.a. sum to 1)

Layer-wise Relevance Propagation [Bach et al., 2015] 

 

Excitation Backprop [Zhang et al., 2016] 

 

* Includes “contrastive” variant 

Both require custom backward functions for most kinds of layers
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Gradient Integrated 
Gradients Guided Backprop



Change the input and observe the effect on the output
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Perturbation

Clear meaning, but can only test a small number of occlusion patterns

Input Occlusion RISE

[Zeiler and Fergus, ECCV 2014; Petsiuk et al., BMVC 2018]
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What are desiderata for attribution?  
How would one evaluate an attribution method? 
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0. Measure Performance on Weak Localization

a. ImageNet Bounding Box Localization  
 
b. Pointing Game [Zhang et al., ECCV 2016]
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0. Is “Contestable”

An explanation should be falsifiable.

[Fong & Vedaldi, ICCV 2017]



26

1. Selective to Neuron

[Mahendran & Vedaldi, ECCV 2016]

DeConvNet Guided Backprop Gradient
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1. Selective to Neuron

[Mahendran & Vedaldi, ECCV 2016]
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2. Sensitive to Model Parameters

[Adebayo et al., NeurIPS 2018]
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2. Sensitive to Model Parameters

[Adebayo et al., NeurIPS 2018]
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3. Sensitive to Data Labels

[Adebayo et al., NeurIPS 2018]
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3. Shift Invariant

[Kindermans et al., arXiv 2017; Zhang, ICML 2019]
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4. Perturbation Analysis

Deletion Game  
a. Successively extract salient patches from heatmap 
and “delete” them 
b. Plot curve and report AUC 

Problems? 
* Choice in patch size 
* Evaluating outside of training domain 
 
ROAR (Remove And Retrain) [Hooker et al., 2018]  
* Retrain classifiers with X% of features (i.e., pixels) 
removed 
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Best practices

* Assume the model has failure modes and seek to 
explain them with attribution methods 
 
* If using backdrop-based methods, consider contrastive 
methods: 
Contrastive Excitation Backprop 
Competitive Gradient * Input [Gupta and Arora, 2019]  
 
* Don’t use Guided Backprop to “improve visual quality” 
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What should interpretability research focus on from hence forth?

See white paper.
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Future directions

1. Common benchmarks and standards for evaluating 
desiderata for interpretability properly 

2. Tools for practitioners 
3. Under-explored research areas



TorchRay 

github.com/facebookresearch/torchray 
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http://github.com/facebookresearch/torchray

