Interpretability Tutorial

Ruth Fong

University of Oxford, VGG Reading Group Tuesday, 8 October 2019

What do we mean when we say "interpretability"?

2

When is interpretability desirable?

3

When is interpretability desirable?

- 1. More emphasis in sensitive domains
- Less emphasis given historical performance 2.
- Less emphasis if improving interpretability incurs 3. other costs

What are desiderata for interpretability research?

5

Desiderata for Interpretability Research

1. Trust

- still subjective
- "well-understood" or "confidence-giving"
- "how often a model is right" + "for which examples is it right"
- 2. Causality
 - "does the model learn *causal* relations?"
- 3. Transferability
 - "does the model generalize?"

- 4. Informativeness
 - "what information does can this model provide to human decision makers?"
- 5. Fair and Ethical Decision Making
 - "can we produce *interpretations* by which to assess if automated decisions conform to ethical standards?"
 - "right to explanation" EU GDPR

What has interpretability research focused on thus far?

See white paper.

1. Explaining a specific prediction

- "local explanation"
- What part of the input is responsible for the model's prediction? Attribution maps.
- Which training examples are are responsible for the model's prediction? Attribution to data points.
- Disadvantage: Only explains local behavior around a a given "point"

2. Explaining global model behavior

- "transparency"
- Can we construct *human-understandable* representations of the model's global behavior? **Model {distillation,approximation,** compression}.
- What properties does a component of the model have? How does a component of a model functionally work? "Science of X."

3. Building more interpretable models

- Related to model approximation
- Disadvantage: No consensus yet on appropriate "interpretable" models

4. Visualization tools

- Static
 - input/output/intermediate representation
 - e.g, t-SNE, feature visualization
- Interactive
 - dashboards, explanations, interaction with model

benchmarks

Case study: Attribution maps Evolution of methods and

Attribution

Where is the model **looking**?

Popular Methods

14

Backpropagation

Combine network activations and gradients

Input

Fast, but difficult to characterize

[Simonyan et al., ICLR Workshop 2014; Selvaraju et al., ICCV 2017] [Mahendran and Vedaldi, ECCV 2016; Adebayo et al., NeurIPS 2018]

Backprop-based Methods: Improving the Gradient

1. Gradient [Simonyan et al., 2014]

def relu_backward(x, dx): return (x > 0) * dx

2. DeConvNet [Zeiler & Fergus, 2014]

def relu_backward(x, dx): return (dx > 0) * dx

3. Guided Backprop [Springenberg et al., 2015]

def relu_backward(x, dx): return ((dx > 0) * (x > 0) *dx)

Evolution to Improve Visual Quality

Backdrop-based Methods: Mitigate "gradient saturation"

Gradient * Input

 $x \odot \frac{df_c(x)}{dx}$

 $\hat{S}_c(x) = (x - \bar{x}) \times$

Integrated Gradients SmoothGrad [Smilkov et al., 2017] [Sundararajan et al., 2017]

$$\times \int_{0}^{1} \frac{\partial S_{c}(\bar{x} - \alpha(x - \bar{x}))}{\partial x} d\alpha \quad \hat{S}_{c}(x) = \frac{1}{n} \sum_{n=1}^{n} S_{c}(x + \mathcal{N}(0, \sigma^{2}))$$

* integrate over different intensities * average away the noise * requires choice of \bar{x}

Backdrop-based Methods: + Activations

Class Activation Map (CAM) [Zhou et al., 2016]

* Requires specific architecture: GAP + FC after convs

Grad-CAM [Selvaraju et al., 2017]

Generalization of CAM for any architecture

18

Backdrop-based Methods: Conservation Principle (a.k.a. sum to 1)

Layer-wise Relevance Propagation [Bach et al., 2015]

Excitation Backprop [Zhang et al., 2016]

* Includes "contrastive" variant

Both require custom backward functions for most kinds of layers

guided backprop

grad * input

exc backprop (EB)

Label: Samoyed

Gradient

Integrated Gradients

Guided Backprop

Plain

SmoothGrad

21

Perturbation

Change the input and observe the effect on the output Occlusion Input

Clear meaning, but can only test a small number of occlusion patterns

[Zeiler and Fergus, ECCV 2014; Petsiuk et al., BMVC 2018] ²²

What are desiderata for attribution? How would one evaluate an attribution method? 23

0. Measure Performance on Weak Localization

- a. ImageNet Bounding Box Localization
- b. Pointing Game [Zhang et al., ECCV 2016]

0. Is "Contestable"

chocolate sauce

Mask Overlay

An explanation should be **falsifiable**.

0.610 => 0.351

0.610 => 0.015

[Fong & Vedaldi, ICCV 2017] ²⁵

1. Selective to Neuron

DeConvNet

Guided Backprop

Gradient

[Mahendran & Vedaldi, ECCV 2016] ²⁶

1. Selective to Neuron

[Mahendran & Vedaldi, ECCV 2016] ²⁷

2. Sensitive to Model Parameters

[Adebayo et al., NeurIPS 2018] ²⁸

2. Sensitive to Model Parameters

Inception v3 - ImageNet

SSIM: Inception v3 - ImageNet

[Adebayo et al., NeurIPS 2018] ²⁹

3. Sensitive to Data Labels

Absolute-Value Visualization

Rank Correlation - Abs

Diverging Visualization

Rank Correlation - No Abs

[Adebayo et al., NeurIPS 2018] ³⁰

3. Shift Invariant

[Kindermans et al., arXiv 2017; Zhang, ICML 2019] ³¹

4. Perturbation Analysis

Deletion Game

a. Successively extract salient patches from heatmap and "delete" them

b. Plot curve and report AUC

Problems?

* Choice in patch size

* Evaluating outside of training domain

ROAR (Remove And Retrain) [Hooker et al., 2018] * Retrain classifiers with X% of features (i.e., pixels) removed

elephant

Best practices

* Assume the model has failure modes and seek to explain them with attribution methods

* If using backdrop-based methods, consider contrastive methods: Contrastive Excitation Backprop Competitive Gradient * Input [Gupta and Arora, 2019]

* Don't use Guided Backprop to "improve visual quality"

What should interpretability research focus on from hence forth?

See white paper.

34

Future directions

- 1. Common benchmarks and standards for evaluating desiderata for interpretability properly
- 2. Tools for practitioners
- 3. Under-explored research areas

TorchRay github.com/facebookresearch/torchray

O PyTorch

