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Abstract		
The	hum	of	an	 individual’s	morning	commute	may	consist	of	a	 jackhammer	 from	nearby	
construction	work,	the	screeching	wheels	of	a	train,	conversations	of	other	commuters,	and	
the	 audiobook	 they	 are	 currently	 listening	 to.	 Humans	 –	 and	 more	 broadly,	 all	 hearing	
animals	–	only	receive	the	mixture	of	the	sounds	surrounding	them,	yet	they	unconsciously	
separate	out	and	distinguish	its	 individual	sources.	Although	humans	have	two	ears,	 they	
are	quite	capable	of	such	source	separation	using	one	ear	(i.e.	a	single	channel).	Ongoing	
neuroscience	and	engineering	research	on	the	problem	of	single-channel	source	separation	
has	primarily	focused	on	untangling	sound	mixtures	into	their	individual	components	in	a	
supervised	 fashion,	 in	 which	 both	 mixed	 and	 single	 sound	 sources	 are	 learnt	 from.	
However,	 in	 nature,	 sound	 separation	 is	 an	 unsupervised	 task,	 as	 creatures	 never	 have	
access	 to	 cleanly,	 separated-out	 sounds.	 This	 dissertation	 is	 the	 first	 known	 attempt	 to	
tackle	this	fuller	problem	of	unsupervised	single-channel	source	separation	without	hand-
crafted	 algorithms.	 It	 presents	 a	 promising,	 novel	 unsupervised	 sound	 source	 separation	
paradigm	 by	 first	 training	 an	 artificial	 neural	 network	 to	 predict	 future	 cochleagram	
activity	 and	 then	 leveraging	 regularized	 network	 hidden	 units	 to	 isolate	 an	 individual	
component	 sound	 from	 a	 mixture.	 Additionally,	 this	 work	 identifies	 two	 biologically-
consistent	 features	 in	 its	 networks:	 First,	 it	 shows	 that	 network	 hidden	 units	 exhibit	
frequency	 and	 temporal	 tuning	 comparable	 to	 those	 found	 in	 the	 spectro-temporal	
receptive	fields	(STRFs)	of	auditory	cortex	(AC)	of	anesthetized	ferrets	(Singer	et	al.,	n.d.).	
Second,	 it	 identifies	 hidden	 units	 whose	 selectivity	 mimics	 those	 of	 selective	 ferret	 AC	
neurons	(Harper	et	al.,	n.d.).	This	dissertation	suggests	that	predictive	coding	may	not	only	
encode	 biologically-consistent	 qualities	 but	 also	 capture	 features	 necessary	 for	 sound	
separation.	 	
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Introduction	
In	many	auditory	situations,	like	a	crowded	conference	room	or	a	college	gathering,	there	
are	multiple	sounds	from	different	sources	occurring	at	once.	Somehow,	the	brain	is	able	to	
separate	 out	 these	mixtures	 of	 sounds	 into	 separate	 sources,	 at	 least	 to	 the	 extent	 that	
sound	recognition	and	identification	can	often	occur.	Examples	include	being	able	to	isolate	
and	 understand	 a	 speaker	 from	 a	 background	 of	 other	 speakers,	 or	 hear	 a	 singer	 from	
amidst	musical	 instruments,	 or	 distinguish	 a	 crackling	 fire	 in	 a	 hearth	 from	 the	 pouring	
rain	outside.	This	challenging	problem	has	been	 likened	to	 identifying	and	characterizing	
the	 boats	 on	 a	 lake	 (i.e.	 different	 sound	 sources)	 from	 just	 observing	 the	 ripples	 in	 two	
small	 channels	 from	 the	 lake	 (i.e.	 our	 two	 ear	 drums)	 (Bregman,	 1990).	 Although	much	
progress	has	been	made	on	computational	solutions	to	the	source	segregation	problem	for	
some	restricted	situations,	for	the	auditory	situations	typically	experienced	by	humans	and	
other	animals,	much	remains	to	be	solved.	
	
This	project	had	two	aims	with	regard	to	this	problem:	

1. To	 investigate	possible	neurally-inspired	 computational	models	 that	 can	 solve	 the	
problem	subject	to	many	of	the	constraints	that	the	brain	often	faces.	

2. To	investigate	whether	the	units	in	such	models	display	similar	properties	to	single	
neurons	recorded	in	the	primary	auditory	cortex,	in	response	to	isolated	sounds	and	
sound	mixtures.	

	
Improved	 understanding	 of	 the	 computational	 basis	 of	 sound	 source	 segregation	 would	
have	 many	 applications	 in	 engineering	 from	 automatic	 speech	 recognition	 in	 noisy	
environments,	 to	 enhancing	 auditory	 prosthetics,	 and	 may	 also	 have	 implications	 for	
source	segregation	beyond	the	auditory	domain.	Understanding	the	neural	instantiation	of	
sound	source	segregation	would	also	be	valuable	in	helping	those	with	hearing	difficulties,	
who	 often	 struggle	 in	 noisy	 environments	 (Kochkin,	 2002),	 as	 well	 as	 possibly	 provide	
general	insight	into	the	manner	by	which	the	brain	partitions	the	experienced	world.	
	

The	blind	source	segregation	problem	as	faced	by	the	brain	
The	 blind	 source	 segregation	 problem	 faced	 by	 the	 brain	 is	 extremely	 challenging.	Most	
current	 computational	 methods	 for	 source	 segregation	 apply	 best	 in	 certain	 restricted	
situations,	often	unlike	the	auditory	situations	the	brain	has	to	cope	with.		
	
Here	are	just	some	of	the	major	challenges	in	the	source	segregation	problem	encountered	
by	the	brain:	

1. The	brain	has	only	one	or	two	sound	receivers	(i.e.	two	ears).	Humans	can	do	sound	
segregation	 on	 monaural	 recordings,	 as	 most	 20th	 century	 music	 were	 recorded	
using	a	single	channel.	Yet,	independent	component	analysis	(ICA),	one	of	the	main	
sound	 segregation	 paradigms,	 often	 requires	 as	 many	 microphones	 as	 there	 are	
sound	sources	(Comon,	1994).	

2. The	brain	never	receives	the	sources	in	a	mixture,	ruling	out	supervised	models	that	
dominate	the	sound	segregation	landscape.	
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3. The	number	of	sources	is	rarely	unknown	and	can	vary	with	the	passage	of	time,	yet	
many	models	require	there	to	be	a	fixed,	known	number	of	sources.	

4. Natural	 sounds	 are	 extremely	 diverse:	 some	 are	 harmonic,	 while	 others	 are	 not;	
some	 are	 regular,	 while	 others	 are	 stochastic.	 However,	 some	 models	 rely	 on	
specific	 qualities,	 such	 as	 harmonic	 rules,	 that	 are	 only	 contained	 in	 a	 subset	 of	
natural	sounds.	

	

Previous	Computational	Approaches	to	the	Source	Segregation	Problem	
Until	recently,	computational	approaches	to	sound	separation	have	largely	fallen	under	two	
frameworks:	 computational	 auditory	 scene	 analysis	 (CASA)	 and	 independent	 component	
analysis	 (ICA).	 Introduced	 in	 the	 early	 1990s	 as	 the	 first	 formidable	 attempt	 on	 sound	
segregation	 (Bregman,	 1990;	 Brown	 and	 Cooke,	 1994),	 CASA	 leverages	 the	 harmonic	
structure	of	pitch-based	noises	 to	design	hand-crafted	algorithms	 for	 isolating	 individual	
sounds	 from	 their	 mixture	 (Kashino	 and	 Tanaka,	 1993;	 Ellis,	 1994;	 Wang	 and	 Brown,	
2006).	Around	the	same	time,	the	mathematically-grounded	ICA	framework	(Comon,	1994)	
and	 several	 implementations	of	 it	 (Bell	 and	Sejnowski,	 1995;	Cardoso	and	Laheld,	 1996)	
was	developed.	An	extension	of	principal	component	analysis,	ICA	treats	sound	separation	
as	 a	matrix	 decomposition	 problem	 and	 seeks	 to	 find	 the	weights	 that	 best	 explain	 how	
sounds	 additively	 combine	 to	 form	 a	mixture.	When	 there	 are	 as	many	microphones	 as	
there	are	 sounds,	 the	 typically	underdetermined	problem	can	be	 solved	and	 ICA	 can	use	
differing	distances	to	microphones	to	perform	unmixing	(Comon,	1994).	More	recently,	ICA	
has	been	retooled	for	single-channel	sound	separation	by	masking	and	weighting	different	
parts	of	the	frequency	spectrum	(Roweis,	2001)	and	first	learning	the	statistical	qualities	of	
different	kinds	of	sounds	(Jang	and	Lee,	2003).	
	
However,	when	attempting	to	understand	how	nature	solves	sound	separation,	these	main	
frameworks	are	severely	lacking	in	that	CASA	requires	strong	assumptions	that	do	not	hold	
for	atonal	sounds	 like	 the	crunching	of	 leaves,	while	 ICA	does	not	consider	 the	biological	
mechanisms	of	sound	separation.		
	

Previous	Investigations	on	the	Neural	Basis	of	Sound	Source	Segregation	
Recent	experimental	research	using	multi-electrode	(Mesgarani	and	Chang,	2013)	and	EEG	
(O’Sullivan	et	al.,	2015)	recordings	has	shown	that	the	auditory	cortex	neurons	of	humans	
cued	to	attend	to	a	single	sound	in	a	mixture	neurons	are	selective	for	and	can	be	used	to	
decode	 the	 target	 sound.	 Additionally,	 work	 on	 the	 auditory	 pipeline	 suggests	 that	 the	
more	 upstream	 a	 neuron	 of	 an	 attending	 human	 is	 in	 the	 auditory	 pathway,	 the	 more	
selective	it	 is	(Zion	Golumbic	et	al.,	2013).	In	animals,	one	paper	demonstrated	that	some	
primary	 auditory	 cortex	 neurons	 of	 anesthetized	 cats	were	 selective	 for	 the	 background	
noise	 of	 bird	 chirps,	 even	 when	 presented	 simultaneously	 with	 the	 louder,	 main	 chirp	
sound	(Bar-Yosef	and	Nelken,	2007).	Other	 related	animal	 studies	on	auditory	streaming	
(Kanwal	 et	 al.,	 2003;	Micheyl	 et	 al.,	 2005;	Bee	et	 al.,	 2011)	 are	quite	 limited	 in	 that	 they	
mostly	used	simple	tones	and	focused	on	separating	out	sequentially-played	“ABAB”	tones	
rather	than	simultaneously	occurring	tones.	
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Our	Approach	to	Sound	Source	Segregation	and	its	Consistency	with	Neural	Data	
The	approach	taken	here,	which	may	have	some	potential	to	overcome	some	of	the	above	
challenges,	is	based	on	the	idea	of	predictive	coding.	There	are	a	number	of	different	takes	
on	what	is	meant	by	predictive	coding,	the	study	here	takes	the	approach	that	neurons	and	
the	 networks	 in	 which	 they	 are	 embedded	 are	 optimized	 to	 represent	 that	 which	 is	
predictive	of	the	future	(Bialek	et	al.,	2001;	Salisbury	and	Palmer,	2015).	It	is	posited	that	if	
such	network	is	constrained	to	be	parsimonious,	perhaps	with	some	additional	constraints,	
it	may	 learn	 to	naturally	perform	stream	segregation	as	 that	 is	 the	most	efficient	way	 to	
accurately	predict	the	future	from	the	past.	
	
This	dissertation	presents	a	novel	paradigm	 for	unsupervised	source	segregation	by	 first	
training	artificial	neural	networks	to	perform	a	supervised	predicting	the	future	task	and	
second	 leveraging	 subsets	 of	 network	 hidden	 units	 to	 perform	 unsupervised	 sound	
separation.	 It	 also	 outlines	 a	 biologically-inspired	 network	 regularization	 technique	 that	
yields	surprisingly	decent	unsupervised	sound	separation	results.	
	
In	 addition	 to	 presenting	 a	 promising	 avenue	 for	 unsupervised	 source	 segregation,	 this	
work	also	 identified	biologically-consistent	auditory	 receptive	 fields	and	selective	hidden	
units	 in	 its	 trained	neural	networks;	 the	networks’	hidden	units	demonstrated	surprising	
similarity	to	characteristics	of	primary	auditory	neurons	in	anesthetized	ferrets	(Harper	et	
al.,	n.d.;	Singer	et	al.,	n.d.).	
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Methods	
All	 computational	 methods	 were	 created	 using	 custom	 MATLAB	 and	 python	 code	 and	
utilized	the	NumPy	(van	der	Walt	et	al.,	2011),	SciPy	(Jones	et	al.,	n.d.),	Matplotlib	(Hunter,	
2007),	Lasagne	(Dieleman	et	al.,	2015),	and	Theano	(Al-Rfou	et	al.,	2016)	Python	libraries	
for	numerical	computing,	statistical	testing,	visualizing	results,	and	designing	and	training	
neural	networks	respectively.		

Data	
2.5-second,	 unique	 sound	 clips	 of	 individual,	 human	 speakers	 talking	were	 taken	 from	 a	
database	of	over	532	Australian	English	speakers	(301	female,	231	male)	participating	in	
one	of	three	tasks:	a	casual	telephone	conversation,	an	information	exchange	task	over	the	
telephone,	 and	 a	 pseudo-police-style	 interview	 (Morrison	 et	 al.,	 2015).	 The	 sound	 clips	
were	 randomly	 assigned	 into	 two,	 equally-sized	 groups,	 A	 and	 B,	 and	 sound	 clips	 of	
individual	speakers	were	pair-wise	mixed	together	to	form	a	third	group,	AB.		
	
It	was	reasoned	that	a	suitable	database	would	contain	mixtures	of	sounds	that	can	mostly	
be	segregated	by	the	human	ear;	thus,	only	triplets	of	sound	clips	from	A,	B,	and	AB	were	
used	when	they	met	the	following	criteria:	
	

1. No	more	 than	15%	of	 either	 single-speaker	 clips	 from	A	or	B	was	 silent	 (i.e.	 zero	
amplitude)	

2. The	 ratio	 between	 the	 root	mean	 square	 (RMS)	 of	 the	 individual	 sounds	must	 be	
greater	than	4/3	

3. The	RMS	of	either	single-speaker	sounds	must	be	greater	than	0.02	
	
The	RMS	metric	captured	the	overall	amplitude	of	a	sound	and	is	given	by	Equation	1;	thus,	
the	second	criterion	ensured	that	there	was	enough	of	an	average	volume	difference	for	the	
two	speakers	to	be	differentiated	between	and	the	minimum	RMS	criterion	made	sure	that	
both	sounds	were	sufficiently	loud	enough	to	be	intelligible.		
	

𝑅𝑀𝑆 =
1
𝑛 𝑑!

!
!

!!!

	

Equation	1:	Root	Mean	Square	(RMS)	Metric	

	
The	above	criteria	thresholds,	along	with	the	2.5-second	clip	length,	were	determined	by	a	
human	listener	on	a	sample	of	the	sounds	to	enable	the	mixture	sounds	to	be	“unmixable”	
by	the	human	ear	in	most	cases,	that	is,	that	a	human	would	be	able	to	parse	out	the	two	
individual	sounds.	In	total,	the	above	criteria	filtered	over	100,000	2.5-second	single	sound	
clips	down	to	a	set	of	over	16,000	single	sounds	to	yield	8,268	triplets	of	mixtures	AB	and	
their	component	single-sounds	A	and	B.	
	
Each	 2.5-second	 clip	 in	 the	 three	 groups	 A,	 B,	 and	 AB,	 was	 then	 represented	 as	 a	
cochleagram.	Each	clip	was	sampled	at	41	kHz	and	converted	into	log-spaced	cochleagram,	
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which	corresponds	 to	 sound	activity	after	 its	been	processed	 in	 the	 cochlea.	To	generate	
the	cochleagram,	 the	power	spectrum	was	 taken	using	50	millisecond	Hanning	windows,	
each	 overlapping	 by	 25	 ms,	 to	 yield	 25	 ms	 temporal	 resolution.	 This	 was	 done	 for	 39	
frequency	 bins	 evenly	 spaced	 by	 a	 sixth	 of	 an	 octave	 between	100 ×2! = 100	Hz	 and	
100×2!!!/!  ≈ 8063	Hz,	 which	 includes	 the	 typical	 frequency	 range	 for	 human	 speech	
(Figure	 1).	 A	 whole	 2.5-second	 cochleagram	 was	 then	 split	 up	 into	 250-millisecond	
windows,	each	overlapping	by	225	milliseconds,	that	is,	shifted	by	25	ms.	In	the	prediction	
task,	described	in	more	detail	below,	a	network	was	trained	to	predict	the	last	3	time	bins,	
i.e.	75	ms,	from	the	first	7	time	bins,	i.e.	175	ms,	of	a	250-ms	window.	

	

	
Figure	1:	Cochleagram 

2.5	second	cochleagrams	of	human	speech	served	as	the	inputs	and	outputs	to	the	network	models.	Each	
cochleagram	 was	 sliced	 into	 250-ms	 windows	 that	 overlapped	 by	 225	 ms.	 The	 first	 175	 ms	 of	 a	
cochleagram	(grey	box)	was	used	to	predict	the	next	75	ms	of	activity	(red	box).	

	

Predicting	the	Future	
The	triplets	of	A,	B,	and	AB	sounds	were	split	into	training,	validation,	and	test	sets;	10%	of	
cochleagram	data	was	held	out	as	a	test	set1,	and	of	the	remaining	90%	of	data,	10%	was	
held	out	as	a	validation	set.	In	the	training	set,	half	of	the	cochleagram	examples	were	from	
AB	 mixture	 sounds	 and	 the	 other	 half	 were	 from	 A	 and	 B	 single	 sounds	 that	 did	 not	
comprise	 the	 mixtures	 included	 in	 the	 training	 set,	 so	 that	 the	 network	 would	 not	
accidentally	 “memorize”	 and	 “associate”	 mixture	 sounds	 with	 their	 exact	 individual	
component	 sounds.	 In	 the	 validation	 set,	 all	 cochleagram	 examples	 from	 the	 triplets	 of	
validation	A,	B,	and	AB	sounds	were	included.	There	were	8,640	2.5-second	cochleagrams,	
which	were	 then	divided	 into	250-ms	windows,	 in	 the	 training	 set	 and	2,160	2.5-second	
cochleagrams	in	the	validation	set.	The	networks	were	simply	trained	to	predict	 the	next	
75	milliseconds	from	the	previous	175	milliseconds	of	a	same	cochleagram	window.	

																																																								
1	The	test	set	was	not	used	in	this	dissertation	because	further	work	on	this	project	will	be	done,	so	the	test	
set	is	being	saved	for	end-of-project	testing.	
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For	notation	purposes,	 let	𝑋!" 	be	 the	set	of	 input	vectors	of	 the	 training	set,	𝑦!" 	the	set	of	
target	 outputs	 of	 the	 training	 set,	𝑋!"# 	the	 validation	 set’s	 inputs,	 and	𝑦!"# 	the	 validation	
set’s	target	outputs.	
	

Data	Compression	and	Normalization	
After	 the	 training	 and	 validation	 sets	 have	 been	 created,	 a	 series	 of	 data	 normalizations	
were	applied.	
	
First,	 all	 parts	 of	 all	 datasets	 –	𝑋!" ,𝑦!" ,𝑋!"# ,𝑦!"# 	–	 are	 normalized	 in	 each	 of	 the	 39	
frequency	 channels	by	being	divided	by	 the	median	activity	 in	 that	 frequency	 channel	 in	
𝑋!" .	 Second,	 all	 parts	 of	 all	 datasets	 are	 compressed	 using	 the	 Hill	 function	 (𝛼 = 0.02,	
Equation	2),	which	has	been	shown	to	model	compression	in	the	auditory	nerve	well	(Hill,	
1910;	Lütkenhöner,	2008;	Heil	et	al.,	2011).	The	Hill	function	is	mostly	linear	except	at	the	
extremes,	where	it	has	a	biologically	consistent	compression	effect	on	high	intensities.		
	

ℎ(𝑥;𝛼) =
 𝛼𝑥

 𝛼𝑥 + 1	
Equation	2:	Hill	Function	

Third,	 all	 parts	 of	 all	 datasets	 are	 z-score	 normalized	 by	 the	 mean,	𝜇!" ,	 and	 standard	
deviation,	𝜎!" ,	of	the	training	set	inputs,	𝑋!" 	(Equation	3).	
	

𝑧(𝑥; 𝜇,𝜎) =
 𝑥 − 𝜇

 𝜎 	
Equation	3:	Standard	(z-score)	Normalization	

	

Networks	
Two	 kinds	 of	 artificial	 neural	 networks	 were	 trained	 using	 Lasagne	 (Dieleman	 et	 al.,	
2015)and	Theano	(Al-Rfou	et	al.,	2016)	python	libraries:	feed-forward,	fully	connected	(FC)	
networks	(FCNs)	and	recurrent	neural	networks	(RNNs).	For	both	kinds	of	networks,	each	
layer	is	fully	connected	to	the	next	layer	(Figure	2);	however,	the	hidden	layers	of	RNN	are	
also	 fully,	recurrently	connected	to	 itself	(Figure	4).	The	 inputs	to	the	networks	were	the	
first	 175-ms	 slices	 of	 ordered,	 consecutive	 250-ms	 cochleagram	windows	 and	 the	 target	
outputs	were	the	remaining	75-ms	slices	of	the	same	windows	(Figure	2).		
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Figure	2:	Diagram	of	4-Hidden	Unit	Fully	Connected		(FC)	Network	with	Cochleagram	Inputs	and	Outputs	

	
A	benefit	 of	 an	RNN	 is	 that	 its	 recurrent	 connections	enable	 the	network	 to	 “remember”	
previous	inputs	in	a	sequence	by	carrying	over	memory	from	the	previous	pass-through	of	
the	hidden	 layer.	This	 feature	 is	 a	 loose	analog	 to	 short-term	memory;	 furthermore,	 it	 is	
known	that	 the	mammalian	brain	 is	not	strictly	 feed-forward	and	 incorporates	 recurrent	
connections	(Douglas	et	al.,	1995).	In	a	predicting	the	future	task,	it	is	hypothesized	that	the	
more	 biologically-consistent	 recurrent	 connections	 of	 RNNs	 may	 yield	 sparser,	 more	
compact	network	representations	and	improved	performance.	One	hidden	layer	with	100	
hidden	units	was	used	for	both	kinds	of	networks.	

	

	
Figure	3:	Model	of	4-Hidden	Unit	Fully	Connected	Network	(FC)	

Top	Row.	The	equations	for	𝑧,	the	vector	of	inputs	to	the	hidden	layer,	𝑎,	the	vector	of	outputs	from	the	
hidden	 layer	 after	 the	 non-linearity	𝜎	is	 applied,	 and	𝑦,	 the	 vector	 of	 outputs	 from	 the	 network	 that	
represents	its	predicted	cochleagram	of	future	sound	activity,	given	in	vector	notation.	Bottom	Row.	The	
equations	for	𝑧! ,	a	scalar	of	the	input	to	the	j-th	hidden	unit,	and	𝑦! ,	a	scalar	of	the	k-th	dimension	of	the	
network’s	predicted	output,	given	in	non-vector,	summation	notation.	

	
Mathematically,	the	FC	(Figure	3)	and	RNN	(Figure	4)	models	simply	consist	of	a	non-linear	
function	𝜎,	which	is	applied	to	their	hidden	units,	as	well	as	several	bias	terms	(these	are	
wrapped	up	in	the	weight	matrices	and	not	shown	for	simplicity	in	Figure	3	and	Figure	4)	
and	weight	matrices:		

1. 𝑊!":	 an	 input	 weights	 matrix	 that	 transforms	 the	 input	 into	 its	 pre-non-linearity	
hidden	unit	representation,	

2. 𝑊!:	 an	 output	 weights	 matrix	 that	 transforms	 the	 post-non-linearity	 hidden	 unit	
representation	to	an	output,		

3. 𝑊!:	 a	 recurrent	weights	matrix	 for	RNNs	only	 that	 incorporates	 the	previous	 time	
step’s	hidden	unit	representation	into	its	current	one.	

	
For	RNNs,	𝑊!!	and	𝑊! 	were	initialized	by	sampling	uniformly	from	[−0.01, 0.01].	𝑊!! for	FC	
models	and	𝑊!	for	all	models	were	initialized	using	the	Glorot	uniform	initialization	(Glorot	
and	Bengio,	2010),	which	calls	for	sampling	uniformly	from	[−𝑎,𝑎],	where	
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𝑎 = 12
(𝑓𝑎𝑛!" + 𝑓𝑎𝑛!"#)	

Equation	4:	Glorot	Uniform	Initialization	Term	

𝑓𝑎𝑛!"	denotes	 the	 number	 of	 incoming	 connections,	 and	𝑓𝑎𝑛!"#	denotes	 the	 number	 of	
outgoing	connections.	All	bias	 terms	were	 initialized	 to	zero-filled	vectors	of	appropriate	
length.	
	

	

	
Figure	4:	Model	of	4-Hidden	Unit	Recurrent	Neural	Network	(RNN)	

	
The	 training	 of	 a	 neural	 network	 consists	 of	 two	 phases:	 1.,	 a	 forward	 pass	 through	 the	
network	to	compute	outputs	from	the	training	inputs,	and	2.,	a	backwards	pass	to	update	
the	network	parameters,	𝜃,	by	minimizing	a	cost	function.		
	
	

	
Figure	5:	MSE	Example	
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A	mean	squared	error	(MSE)	cost	function	was	used	to	train	these	networks	(Equation	5).	
MSE	 effectively	 seeks	 to	 minimize	 the	 average	 difference	 between	 a	 computed	 output	
vector,	𝑦!" ,	 and	 a	 target	 output	 vector,	𝑦!" ,	 where	𝑛	denotes	 the	 training	 example	 and	𝑡	
denotes	the	instance	in	a	sequence	–	in	this	case,	the	sequence	the	network	is	processing	is	
the	sequence	of	overlapping,	 cochleagram	windows	 for	a	given	2.5-second	sound	(Figure	
5).	

	

𝜃∗ = argmin[
1
𝑁𝑇 ∥ 𝑦!" − 𝑦!" ∥!!

!

!!!

!

!!!

 + 𝜆 ∥ 𝜃 ∥!]	

Equation	5:	Mean	Squared	Error	(MSE)	Loss	with	L1	Regularization	

	
To	promote	 sparse	 compact	network	 representations,	L1	 regularization	was	also	applied	
(Equation	 6a),	which	 penalizes	 unnecessarily	 large	 network	 parameter	 values	 (Equation	
5).	

∥ 𝑥 ∥!= |𝑥!|
!

!!!

	

∥ 𝑥 ∥!= ( 𝑥! )!
!

!!!

	

Equation	6a,b:	L1	and	L2	Regularization	of	Vector	𝒙	

Hyper-parameter	Search	
The	performance	of	a	neural	network	for	a	specific	task	and	dataset	is	highly	dependent	on	
finding	 the	 right	 combination	 of	 network	 hyper-parameters.	 The	 basic	 neural	 networks	
trained	here	had	three	hyper-parameters:	1.,	the	update	function	used	to	update	network	
weights	based	on	the	cost	function,	2.,	the	non-linear	function	to	apply	to	the	hidden	units,	
and	3.,	the	L1-regularization	parameter,	𝜆,	to	scale	the	regularization	penalty.		
	
	

	
Figure	6:	Hyper-parameter	Grid	Searches	for	Update	and	Non-Linearity	Functions 

The	typical	FC	model	with	the	best	predictive	loss	on	the	validation	set	used	an	adam	update	function	and	
a	rectify	non-linear	function	(A),	while	the	typical	RNN	model	with	the	best	loss	validation	used	an	adam	
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update	 function	 and	 a	 tanh	 non-linearity	 (B).	 RMSProp	 and	Adamax	were	 excluded	 from	 these	 figures	
because	they	yielded	poor	losses	and/or	unstable	results.	

	
After	some	preliminary	exploration,	 the	L1-regularization	parameter	was	set	to	𝜆 = 10!!.	
A	 hyper-parameter	 grid	 search	 over	 several	 options	 for	 update	 functions	 and	 non-
linearities	was	performed	to	find	the	optimal	update	function	and	non-linearity	pairing	that	
best	minimized	the	error	on	the	validation	set.	The	grid	search	identified	that	a	FC	network	
with	 an	 adam	 update	 function	 (Kingma	 and	 Ba,	 2014)	 and	 a	 rectifier	 non-linearity	
(Equation	 7)	 yielded	 the	 best	 predictive	 loss	 on	 the	 validation	 set	 out	 of	 all	 other	
combinations	for	FC	models,	while	an	adam-tanh	RNN	yielded	the	best	loss	of	RNN	models	
(Figure	6).		
	

𝜎 𝑥 = max(0, 𝑥)	
Equation	7:	Rectify	function	

All	networks	described	in	this	dissertation	were	trained	for	500	epochs,	meaning	that	the	
training	 set	was	 iterated	 through	500	 times,	 in	which	 each	 iteration	was	 followed	by	 an	
update	 of	 network	 parameters	 (i.e.	 bias	 terms	 and	 weight	 matrices).	 It	 was	 found	 that	
network	performance	 converged	around	500	epochs	and	 that	 training	 for	 longer	did	not	
yield	substantial	improvements	and	at	times	led	to	network	instability.	
	

“Explicit	Hidden	Unit	Populations”	Network	Extension	for	Unsupervised	Source	Separation	
An	 “explicit	 hidden	 unit	 populations”	 extension	 to	 the	 typical	 definitions	 of	 FC	 and	RNN	
models	was	made,	 in	order	 to	 encourage	different	 sets	of	hidden	units	 to	be	 selective	 to	
individual	component	sounds.		
	
This	novel	extension	defines	three	mutually	exclusive	sets	that	comprise	the	entire	hidden	
unit	population:	“group	1”	(G1),	“group	2”	(G2),	and	“helper”	(H)	units.	Recall	that	half	the	
training	inputs	are	mixtures	and	the	other	half	are	single	sounds.	The	hidden	unit	activity	
of	the	different	population	groups	is	then	regularized	so	that,	 ideally,	G1	units	are	always	
used	to	process	a	single	sound,	G2	units	are	only	used	or	recruited	to	represent	a	second	
sound	in	a	mixture,	and	H	units	are	used	for	general	auditory	processing;	this	penalty	was	
added	 to	 the	 loss	 function	 (Equation	 8).	 This	 ideal	 situation	 was	 encouraged	 by	 1.,	
penalizing	G2	activity	more	than	G1	units	and	2.,	enforcing	L1	norm	competition	between	
the	G1	and	G2	populations,	while	having	L2	norm	regularization	on	the	activity	within	each	
population.	L2	regularization	 tends	 to	cause	hidden	units	 to	all	be	small	values,	while	L1	
regularization	 tends	 to	 drive	 to	 zero	 any	 unnecessary	 hidden	 units.	 Thus,	 it	 was	
hypothesized	that	regularization	technique	would	cause	units	in	a	group	to	act	together	but	
would	cause	groups	to	compete	with	one	another.	Lastly,	L1	regularization	was	applied	to	
H	units	 to	 encourage	efficiency	and	 their	output	 connections	were	eliminated;	 thus,	 they	
are	only	useful	in	RNNs	as	recurrent	connections	in	the	hidden	layer.	
	

𝑃 = 𝛼 ∥ 𝑎(!!) ∥!+ 𝛽 ∥ 𝑎(!!) ∥!+ 𝛾 ∥ 𝑎(!) ∥!	
Equation	8:	“Explicit	Hidden	Unit	Populations”	Penalty	
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The	 networks	 that	 leveraged	 this	 extension	 were	 trained	 with	 the	 following	 population	

split:	 40%	 G1,	 40%	 G2,	 and	 20%	 H	 units,	 with	𝛽 ≥ 𝛼	and	𝛾 =
! |!!|

|!| |!|

!|!|
,	 where	 𝐺1 = 40,	

𝐻 = 20,	and	 𝑈 = 100	denoted	the	number	of	G2,	H,	and	all	hidden	units.	𝛾	was	set	as	it	
was	so	that	each	of	the	H	units	would	experience	half	the	amount	of	regularization	as	the	
G1	units.	Explicitly	defining	 these	hidden	unit	populations	allowed	 for	 further	analysis	of	
how	a	predictive	network	could	tackle	unsupervised	source	separation.	
	

Hyper-parameter	Search	for	Hidden	Unit	Population	Regularization	Parameters,	𝜶	and	𝜷	
A	hyper-parameter	search	was	conducted	to	find	the	optimal	𝛼	first	and	then	𝛽.	Using	the	
L1-regularization	term	𝜆 = 10!!	as	well	as	the	best	update	and	non-linear	functions	found	
in	the	grid	search	using	typically-defined	networks	(i.e.	adam-rectify	for	FC	and	adam-tanh	
for	RNN),	the	𝛼-varying	grid	search	for	FC	and	RNN	models	with	explicitly	defined	hidden	
unit	 populations	 searched	 the	 space	 of	𝛼 ∈ {10!!", 10!!… , 10!!, 10!!} 	while	𝛽 = 1.2𝛼 .	
With	predictive	 loss	being	 roughly	 equivalent	 across	 tested	𝛼 ∈ [10!!", 10!!]	for	 both	FC	
and	 RNN	models	 (Figure	 15a	 and	 Figure	 17a),	𝛼 = 10!!	was	 chosen	 and	 used	 in	 the	𝛽∗-
varying	 grid	 search	 across	 the	 space	 of	𝛽∗ ∈ {2!, 2!,… , 2!, 2!}	and	𝛽 = 𝛽∗𝛼.	 From	 the	𝛽∗-
varying	search,	the	𝛽∗ = 16	FC	model	and	the	𝛽∗ = 2	RNN	model	earned	the	best	predictive	
losses	in	their	respective	model	classes	(Figure	15b	and	Figure	17b).		
	
Thus,	the	𝛽∗ = 16	FC	model	primarily	and	𝛽∗ = 2	RNN	model	secondly	will	be	analyzed	in-
depth	 in	 the	 Results	 section.	 These	 model	 choices	 for	 in-depth	 analysis	 were	 chosen	 a	
priori	 based	 on	 their	 predictive	 loss	 and	 before	 any	 knowledge	 of	 their	 unsupervised	
source	separation	abilities.	
	

Unsupervised	Source	Separation	

Probing	Network	on	Unsupervised	Source	Separation	Problem	using	Select	Hidden	Units	
Given	a	set	of	hidden	units,	the	network	can	be	probed	using	solely	that	set	of	hidden	units,	
i.e.	G1	or	G2,	by	turning	off	the	output	connections	from	all	other	units	(Figure	7).	Ideally,	
when	 a	 mixture	 sound	 is	 passed	 into	 a	 probe	 network,	 with	 only	 a	 subset	 of	 output	
connections	enabled,	 as	 an	 input,	 it	outputs	a	prediction	of	one	of	 its	 component	 sounds	
instead	of	a	prediction	of	the	mixture.	

	

	
Figure	7:	Example	Network	Using	Only	Output	Connections	from	Hidden	Units	2	and	4	
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Qualitatively,	 a	 probe	 network’s	 predictions	 of	 individual	 triplet	 examples	 from	 the	
validation	 set	 can	be	visualized	and	examined	 to	 see	whether	 the	mixture’s	prediction	 is	
similar	to	the	target	prediction	of	one	of	its	component	sounds	(Figure	12).	Quantitatively,	
a	measure	of	how	well	a	probe	network	performs	on	the	unsupervised	source	separation	
problem	of	predicting	 the	output	of	a	 single	 sound	 from	a	mixture	using	only	 the	output	
connections	from	a	population	of	hidden	units,	 i.e.	𝑃 = 𝐺1,	can	be	calculated	by	Signal-to-
Distortion	Ratio	(SDR)	measure	(Equation	9):	
	

𝐸!"# 𝑃,𝑋! = 𝑆𝐷𝑅 𝑃,𝑋! = 10 log!"(
∥ 𝑦!! ∥!!

∥ 𝑦!! − 𝑦!(!"!) ∥!
!)	

Equation	9:	SDR	Metric	for	Probe	Network’s	Source	Separation	

where	 𝑦!!denotes	the	target	output	for	the	m-th	individual	sound	𝑋 ∈ {𝐴,𝐵}	in	the	set	of	
validation	triplets	and	𝑦!(!"!)	denotes	the	output	predicted	for	𝐴𝐵!,	the	mixture	sound	of	
𝐴!	and	𝐵!	by	the	network	when	using	the	output	connections	of	the	population	of	hidden	
units	𝑃.	Intuitively,	the	SDR	metric	is	positive	when	the	signal	of	the	target	output,	which	is	
described	 in	 the	 log	 term’s	 numerator,	 is	 greater	 than	 the	 distortion	 incurred	 by	 the	
prediction,	 which	 is	 captured	 in	 the	 log	 term’s	 numerator.	 Thus,	 a	 larger	 SDR	 metric	
suggests	a	better	source	separation	and	a	positive	SDR	score	suggests	that	the	prediction	
captures	more	signal	than	error.	
	
For	models	with	explicit	hidden	unit	populations	G1	and	G2,	because	either	G1	or	G2	could	
be	predicting	either	sound	A	or	sound	B	for	a	given	validation	triplet,	the	SDR	metric	for	the	
parallel	pairing	of	G1	predicting	sound	A	and	G2	predicting	sound	B	(G1-A,	G2-B)	must	be	
compared	to	that	for	the	cross	pairing	of	G1	predicting	sound	B	and	G2	predicting	sound	A	
(G1-B,	G2-A).	To	do	so,	the	SDR	metric	can	be	computed	for	all	combinations	of	hidden	unit	
populations	 and	 single-speaker	 sounds,	 i.e.,	 𝐸!"# 𝑃!,𝐴! ,	 𝐸!"# 𝑃!,𝐵! ,	 𝐸!"# 𝑃!,𝐵! ,	
𝐸!"# 𝑃!,𝐴! 	where	𝑃! = G1,	𝑃! = G2,	 and	𝐴!	and	𝐵!	denote	 sound	 A	 and	 B	 in	 the	 m-th	
validation	triplet.	Then,	the	scores	for	each	pairing	can	be	summed	up	(Equation	10b,c)	and	
the	 maximum	 of	 the	 two	 summed	 scores	 would	 suggest	 the	 better	 sound-separating	
pairing.	 An	 overall	 SDR	 metric	 can	 be	 calculated	 by	 taking	 the	 mean	 of	 the	 maximum	
summed	scores	over	all	validation	triplets,	as	given	by	Equation	10a:	
	

𝐿 =
1
𝑀 max(𝑀!,𝑀!)

!

!!!

	

	 	

𝑀! = 𝐸!"# 𝑃!,𝐴! + 𝐸!"#(𝑃!,𝐵!)	
	 	

𝑀! = 𝐸!"# 𝑃!,𝐴! + 𝐸!"#(𝑃!,𝐵!)	
	 	

Equation	10a,b,c:	Overall	Unsupervised	Sound	Separation	Probe	Measure	using	SDR	Metric	

Although	the	focus	on	this	dissertation’s		
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Results	 section	will	 be	 on	 the	 analysis	 of	 network	models	with	 explicitly	 defined	hidden	
unit	populations,	this	probe	network	paradigm	can	be	used	on	analyze	any	typical	network	
if	 a	 set	 of	 hidden	 units	 with	 source	 separating	 qualities	 can	 be	 identified	 as	 well	 as	
generalized	to	separate	out	more	than	2	sounds.		
	
Unless	otherwise	noted,	all	visualizations	of	predicted	cochleagrams	(i.e.	Figure	12)	show	
the	first	25ms	–	rather	than	the	full	75ms	prediction	–	predicted	by	a	given	network	for	all	
time	bins	over	the	2.5	second	period.			
	

Statistical	Testing	

Permutation	Test	
To	test	whether	hidden	unit	populations	𝑃!	and	𝑃!	(i.e.	𝑃! = 𝐺!	and	𝑃! = 𝐺!)	used	to	probe	
the	network	produce	source	separations	that	are	significantly	better	than	if	random	hidden	
unit	populations	were	used,	a	permutation	test	can	be	utilized.	To	generate	a	sample	for	the	
permutation	test’s	null	distribution,	all	hidden	units	with	output	connections	are	randomly	
split	 into	 two	groups	𝑅!	and	𝑅!	that	are	 then	used	 to	calculate	probe	predictions	𝑦!!(!"!)	
and	𝑦!!(!"!)	for	all	𝑚 ∈ {1,… ,𝑀}	validation	triplets.	Next,	an	overall	mean	probe	score	can	
be	 calculated	 using	𝐸!"# 𝑅!,𝐴! ,	𝐸!"# 𝑅!,𝐵! ,	𝐸!"# 𝑅!,𝐵! ,	𝐸!"# 𝑅!,𝐴! 	and	 the	 max	
function	(Equation	9).	This	mean	score	 is	then	used	as	a	sample.	With	a	sufficiently	 large	
number	 of	 samples	𝑁,	 a	 p-value	 can	 be	 computed	 by	 calculating	 what	 proportion	 of	
samples	 in	 the	 null	 distribution	 are	 better	 probe	 scores	 than	 that	 earned	 by	 the	 tested	
populations	𝑃!	and	𝑃!.	 For	 instance,	 if	𝑁 = 10,000,	 the	p-value	 testing	 the	null	hypothesis	
that	 populations	𝑃! 	and	𝑃! 	do	 not	 produce	 better	 source	 separations	 than	 randomly	
assigned	populations	𝑅!	and	𝑅!	is	given	by	Equation	11:	
	

𝑝 =
|𝑥! > 𝑥|

𝑁 	
Equation	11:	p-value	Calculation	for	Permutation	Test	using	SDR	Measure	

where	𝑥	is	 the	 overall	 SDR	metric	 earned	 by	 populations	𝑃!	and	𝑃!,	𝑥!	is	 the	 n-th	 sample	
SDR	 metric,	 and	 |𝑥! > 𝑥| 	denotes	 the	 number	 of	 samples	 that	 had	 a	 better	 source	
separation	metric	than	one	in	question.		
	

Inference	Test	using	Correlation	Coefficient	and	Student’s	t	Distribution	
To	 test	 the	 strength	 of	 a	 relationship	 between	 two	 variables,	 the	 sample	 Pearson	
correlation	coefficient	(CC),	𝑟,	is	computed.	A	two-sided	p-value	is	also	computed	using	the	
Student’s	 t	 distribution	 to	 test	 the	 null	 hypothesis	 that,	 given	 the	 sample	 correlation	
coefficient	𝑟,	the	true	correlation	coefficient	𝜌 = 0.	The	following	t-value	is	calculated	using	
Equation	12:	
	

𝑡 = 𝑟
𝑛 − 2
1− 𝑟!	

Equation	12:	t-value	for	Correlation	Coefficient	Inference	Test	
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where	𝑛	is	 the	 number	 of	 pairs	 being	 compared.	 Then,	 the	 two-sided	 p-value	 can	 be	
calculated	 using	 the	 cumulative	 distribution	 function	 (CDF)2,	𝐹(𝑥,𝑑𝑓),	 of	 the	 Student’s	 t	
distribution	for	𝑑𝑓 = 𝑛 − 2	degrees	of	freedom	(Equation	13):	
	

𝑝 = 2(1− 𝐹 𝑡 ,𝑛 − 2 )	
Equation	13:	Two-sided	p-value	for	Correlation	Coefficient	Inference	Test	using	the	t	Distribution’s	CDF	

Scipy’s	linregress	function	(Jones	et	al.,	n.d.)	was	used	to	compute	𝑟,	𝑡,	and	𝑝	as	well	as	to	fit	
a	linear	regression	line	to	the	set	of	(x,y)	coordinates	of	the	two	variables	being	compared.	
	

Biologically-Consistent	Characteristics	

Fan-In	and	Fan-Out	Units	
To	 analyze	 how	 trained	 networks	 make	 their	 predictions	 and	 compare	 the	 “receptive	
fields”	of	the	hidden	units	with	spectro-temporal	receptive	fields	(STRFs)	of	ferret	auditory	
cortex	neurons,	the	input	and	output	network	weights	associated	with	a	given	hidden	unit	
were	appropriately	reshaped	and	normalized	per	unit	to	show	a	given	unit’s	temporal	and	
frequency	tuning	(Figure	8).		
	

	
Figure	8:	Example	of	How	Fan-In	and	Fan-Out	Weights	for	Hidden	Unit	1	are	Reshaped	to	Form	a	STRF	

Visualization	

Selectivity	Measures	
To	examine	how	“selective”	a	given	hidden	unit	was	to	a	single	sound	in	a	mixture,	for	each	
triplet	 set	 of	 sounds	 from	 sets	 A,	 B,	 and	 AB	 in	 the	 validation	 set,	 the	 Pearson	 sample	
correlation	 coefficients	 were	 calculated	 between	 the	 outputs	 of	 a	 given	 hidden	 unit	
(Equation	 14a,b)	 for	 the	 A	 and	 AB	 sounds,	 as	 well	 as	 between	 the	 given	 hidden	 unit’s	
outputs	for	the	B	and	AB	sounds.	
	

𝑎! = 𝜎 𝑧! = 𝜎 𝑊!"(!")

!

!!!

𝑥! 	

𝑎(!)! = 𝜎 𝑧(!)! = 𝜎 𝑊!"(!")

!

!!!

𝑥(!)! 	

																																																								
2	For	any	distribution,	the	CDF	function	denotes	the	probability	that	a	random	variable	X	will	be	less	than	or	
equal	to	some	sample	x:	𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥).	
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Equation	14a,b:	Output	of	the	j-th	Hidden	Unit	for	FC	(top)	and	RNN	(bottom)	Models		

	
Then,	 for	 each	 triplet,	(𝐶𝐶(𝐴,𝐴𝐵),𝐶𝐶(𝐵,𝐴𝐵)) was	plotted	onto	a	Cartesian	plot	 and	a	2D	
histogram	was	used	to	visualize	all	the	points	(Figure	9).	

	

	
Figure	9:	Example	of	Low	(Left)	and	High	(Right)	Selective	Hidden	Unit	Visualization	

Qualitatively,	points	 that	 lie	 along	 the	x-	or	y-axis	 close	 to	 (1,0)	or	 (0,1)	 suggest	 that	 the	
given	hidden	unit’s	response	was	selective	for	one	sound	in	the	mixture	but	not	the	other,	
because	its	mixture	response	was	lowly	correlated	with	that	of	one	single	sound	but	highly	
correlated	with	that	of	the	other	sound.	In	contrast,	a	point	close	to	the	x	=	y	line	suggests	
that	 the	 unit’s	 response	 was	 non-selective	 for	 that	 triplet	 example	 because	 its	 mixture	
response	 is	as	equally	correlated	with	one	sound	as	 it	 is	with	 the	other	sound.	To	better	
quantify	 a	 unit’s	 overall	 selectivity,	 the	 selectivity	 measure	 given	 by	 Equation	 15	 was	
calculated	for	each	triplet	example’s	point;	a	visualization	of	the	selectivity	 index	is	given	
by	Figure	10.	
	

	
Figure	10:	Selectivity	Index	

	

𝑠 =
  0, ifmax 0, 𝑥 ! +  max 0,𝑦 ! < 0.01

 
max(0, 𝑥)−max(0,𝑦)
max(0, 𝑥)+max(0,𝑦) , otherwise

	

	
Equation	15:	Selectivity	Measure	
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Then,	 a	 highly	 selective	 unit	 (Figure	9b)	whose	 visualization	 showed	points	 along	 the	 x-	
and	 y-	 axes	 yielded	 a	 selectivity	 distribution	with	 two	 large	 peaks	 at	−1	and	+1,	while	 a	
less	 selective	unit	 (Figure	9a)	whose	visualization	 showed	points	mostly	near	 the	𝑥 =  𝑦	
line	yielded	a	selectivity	distribution	with	one	large	peak	at	0.		
	
A	single,	scalar	aggregate	selectivity	measure	was	also	calculated	by	computing	the	mean	
squared	selectivity	score	for	a	given	unit	(Equation	16):	
	

𝑆 =  
1
𝑀 𝑠!!

!

!!!

	

Equation	16:	Aggregate	Selectivity	Measure	for	a	Hidden	Unit	

where	𝑀	denotes	 the	 number	 of	 triplet	 examples	 in	 the	 validation	 set	 and	𝑠! 	denotes	 the	
selectivity	 measure	 for	 the	 i-th	 triplet	 example	 for	 a	 given	 hidden	 unit.	 The	 aggregate	
selectivity	scores	for	all	hidden	units	were	then	used	to	identify	“least”	and	“most”	selective	
units.	
	

Experimental	Methods	
	
The	 reconstructed	 receptive	 field	 visualizations	 were	 compared	 to	 spectro-temporal	
receptive	 fields	 (STRFs)	 of	 primary,	 auditory	 cortex	 neurons	 recorded	 in	 anesthetized	
ferrets	(Figure	19a).	These	recordings	were	conducted	and	first	described	in	another	work	
(Willmore	et	al.,	2016).	Willmore	et	al.	used	the	BigNat	dataset,	which	is	comprised	of	all	
natural	sounds,	and	described	in	detail	how	STRFs	were	derived	from	the	recorded	spiking	
data.	 In	short,	a	mean	squared	error	 (MSE)	 linear	regression	between	a	neuron’s	spiking	
pattern	 over	 time	 and	 the	 log	 spectrogram	 of	 the	 corresponding	 auditory	 stimuli	 was	
conducted.	Unlike	Willmore	et	al.,	L1	regularization	for	the	regression	was	used	instead	of	
L2.	The	 resulting	 STRFs	 ranged	over	32	 frequency	bins	 from	500	 to	17,827Hz	with	one-
sixth	octave	spacing	and	40,	5ms	time	bins	to	be	directly	comparable	to	the	hidden	units	of	
the	 neural	 networks	 in	 Singer	 et	 al.,	 which	 were	 trained	 on	 215ms	 auditory	 stimuli.	 In	
comparison,	 the	 auditory	 stimuli	 used	 to	 train	 the	 networks	 in	 this	 dissertation	used	39	
frequency	 bins	 ranging	 from	 100	 to	 8093Hz,	 which	 is	 typical	 for	 human	 speech,	 and	
coarser,	25ms	time	bins,	with	which	7	time	bins	of	175ms	stimuli	were	used	to	predict	the	
next	75ms’	activity.	
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Figure	11:	Data	for	Selectivity	in	Source	Separation	Experiments	in	Ferrets	(Harper	et	al.,	n.d.)	

Top	Row.	 	The	audio	waves	(A)	and	cochleagrams	(B)	of	two	natural	sounds	and	the	sound	mixture	they	
form.	Bottom	 Row.	 C.	 Rasta	 plots,	 where	 each	 row	 represents	 a	 repeat	 of	 the	 stimulus	 and	 each	 dot	
represents	a	spike,	of	the	responses	a	primary	auditory	cortex	neuron	of	an	anesthetized	ferret	has	to	two	
natural	sounds	(top	and	bottom	row)	and	their	mixture	sound	(middle	row).	D.	The	average	peri-stimulus	
time	 histograms,	which	 averages	 the	 spike	 rate	 over	 all	 repeats	 and	 bins	 the	 averages	 into	 10ms	 time	
windows,	corresponding	to	the	plots	in	C.	

	
The	 selectivity	 visualizations	 of	 the	 hidden	 units	 of	 this	 dissertation’s	 networks	 are	 also	
compared	 to	 similar	 ones	 of	 primary	 auditory	 cortex	 neurons	 of	 anesthetized	 ferrets	
recorded	in	vivo	with	multi-electrode	probes	(Figure	20).	16,	5-second	audio	clips	of	single	
natural	sounds	were	used	as	stimuli,	as	well	as	16	clips	of	mixture	sounds	that	were	each	
composed	of	two	randomly	selected	sounds	from	the	set	of	16	single	sounds	(Figure	11a,b).	
The	32	sounds	were	played	in	random	order	and	repeated	20	times	for	each	penetration	of	
the	 neural	 probe,	 in	 order	 to	 extract	 20	 per-neuron	 responses	 for	 each	 sound	 (Figure	
11c,d).	
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Results	
In	this	section,	three	findings	are	presented.	One	main	finding:	
	

1. a	 feed-forward,	 fully	connected	neural	network	 that	predicts	 future	sound	activity	
from	 past	 activity	 and	 has	 distinctly	 regularized	 hidden	 unit	 populations,	 which	
show	capacity	for	unsupervised,	single	channel	sound	source	separation,	

	
and	two	minor	findings:	
	

2. the	 similarity	 between	 the	 network’s	 receptive	 fields	 and	 real	 spectro-temporal	
receptive	fields	of	ferret,	auditory	cortex	neurons,	and	

3. the	 similarity	between	 the	network’s	hidden	units’	 sound	selective	properties	and	
that	of	ferret,	auditory	cortex	neurons.	

	
In	 addition	 to	 demonstrating	 the	 above	 novel,	 promising,	 and	 somewhat	 biologically-
consistent	 paradigm	 for	 unsupervised	 source	 separation,	 the	 following	 other	 lines	 of	
research	were	explored	but	were	not	included	in	this	dissertation:	
	

1. a	supervised	approach	to	sound	source	separation	using	 	 fully	connected	(FC)	and	
recurrent	 (RNN)	 neural	 networks	 with	 a	 modified	 loss	 function	 that	 encourages	
predicted	single	sounds	to	be	as	distinct	from	each	other	as	possible	(Huang	et	al.,	
2015),	

2. 	an	 unsupervised	 paradigm	 that	 involves	 identifying	 selective	 hidden	 units	 in	
typically	FC	and	RNN	models	and	leveraging	them	to	perform	source	separation,		

3. similar	use	of	RNNs	whose	 recurrent	weight	matrices	were	 specially	 initialized	as		
scaled	versions	of	the	identity	matrix	(Le	et	al.,	2015),	and	

4. the	 use	 of	 several	 sound	 separation	 metrics	 based	 on	 comparing	 the	 target	 and	
predicted	 sound	 separation	 output	 using	 mean	 square	 error	 and	 correlation	
coefficients.	

Unsupervised	Source	Separation	
Without	 any	 explicit	 supervised	 training	 on	 source	 separation,	 a	 fully	 connected	 (FC)	
network	model	trained	on	the	predicting	the	future	of	 its	 input	was	able	to	perform	with	
promising	capacity	on	the	unsupervised	source	separation	problem.	The	model	was	trained	
using	the	following	hyper-parameters:	
	

• Update	function:	adam	
• Non-linearity:	rectifier	
• L1	regularization	factor	on	network	weights:	10-4	
• Regularization	 factors	 for	 explicit	 hidden	 unit	 populations	 (G1,	 G2,	 H):		

𝛼 = 10!!,	𝛽 = 16𝛼,	𝛾 =
! |!!|

|!|!

!!
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The	 selection	 of	 these	 hyper-parameters	 are	 described	 in	 the	Methods	 section	 and	were	
chosen	before	observing	the	network’s	source	separation	ability	because	they	yielded	near-
best	performance	on	the	predictive	task.	
	
Figure	 12	 shows	 qualitative	 examples	 of	 the	 network	 predicting	 the	 separated	 out	
individual	 components	 of	 a	mixture	 by	 only	 using	 the	 output	 connections	 of	 an	 explicit	
population	 of	 hidden	 units	 (i.e.	 G1	 or	 G2).	 These	 two	 populations	 were	 regularized	 in	
training	 to	 both	 compete	with	 one	 another	 as	well	 as	 regularized	 differently	 so	 that	 G2	
received	 16	 times	 the	 regularization	 penalty	 for	 its	 activity	 as	 G1,	 because	𝛽 = 16𝛼.	 The	
examples	were	selected	for	earning	the	best	Source	to	Distortion	ratio	(SDR)	scores,	where	
a	 higher	 score	 connotes	 a	 better	 separation	 result	 and	 a	 positive	 one	 denotes	 that	 the	
source	 separation	 contains	more	 signal	 than	 error.	 It	was	 observed	 that	 the	 hidden	unit	
populations	G1	and	G2	could	each	capture	–	to	an	extent	–	the	characteristics	of	primarily	
one	of	the	individual	sounds.	
	
To	test	whether	the	networks	with	distinctly	regularized	hidden	unit	populations	G1	and	
G2	were	 truly	 outputting	 decent,	 unsupervised	 source	 separation	 results,	 a	 permutation	
test	was	conducted	(Supplementary	Figure	23).	Each	of	the	10,000	samples	was	generated	
by	 randomly	 splitting	 the	 network’s	 hidden	 units	 with	 output	 connections	 into	 two	
populations	 and	 computing	 the	 SDR	 sound	 separation	 metric	 using	 those	 random	
populations.	 The	 model’s	 SDR	 score	 when	 using	 the	 actual	 G1	 and	 G2	 populations	 was	
better	than	all	but	350	of	the	10,000	scores	(𝑝 = 0.035)	earned	by	randomly	split	hidden	
unit	populations.	
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Figure	12:	Examples	of	Unsupervised	Source	Separation	with	the	Best	SDR	Probe	Scores	

For	each	example	(A,	B,	C),	the	target	cochleagrams	for	the	mixture	(i),	source	A	(ii),	and	source	B	(iii)	is	
given	by	 the	 first	 row,	and	 the	predicted	cochleagrams	using	 the	output	connections	of	all	hidden	units	
(iv),	of	only	G1	hidden	units	(v),	and	of	only	G2	hidden	units	(vi)	is	given	by	the	second	row.	A.	This	triplet	
yielded	the	best	SDR	probe	score	of	4.92.	For	SDR,	the	higher	metric	denotes	better	separation;	thus,	the	
parallel	pairing	(G1-A,	G2-B)	–	with	𝑀! = 4.92	–	yields	a	better	separation	than	the	cross	pairing	(G1-B,	
G2-A)	 –	 with	𝑀! = 1.26.	 Qualitatively,	 the	 parallel	 pairing	 is	 noticeably	 better,	 as	 the	 low-frequency	
activity	in	sound	A	(A.ii)	is	predicted	by	G1	hidden	units	(A.v),	and	the	high-frequency	activity	in	sound	B	
(A.iii)	similarly	appears	 in	G2’s	prediction	(A.vi).	B.	The	triplet	with	the	second	best	SDR	probe	score	of	
3.91,	where	the	cross	pairing	yields	a	better	separation	(𝑀! = 0.88,𝑀! = 3.91).	Qualitatively,	the	better	
fit	 of	 the	 cross	 pairing	 is	 difficult	 to	 see	 as	 both	 G1	 (B.v)	 and	 G2	 (B.vi)	 predictions	 possess	 the	 mid-
frequency	activity	of	sound	A	(B.ii)	and	sound	B	(B.iii)	around	2s	and	1s	respectively.	Yet,	there	is	a	small	
amount	of	 low-frequency	activity	predicted	by	G1	(B.v)	 that	corresponds	with	that	of	sound	B	(B.iii).	C.	
The	 triplet	with	 the	 third	best	 SDR	probe	 score	 of	 3.83,	where	 the	 cross	 pairing	 yields	 a	 slightly	 better	
separation	 (𝑀! = 2.69,𝑀! = 3.83).	 The	 high-frequency	 activity	 in	 sound	 A	 (C.ii)	 around	 1.5s	 is	 more	
strongly	 predicted	by	G2	 (C.vi),	 yet	 both	G	1(C.v)	 and	G2	 (C.vi)	 predict	 the	1.6	 kHz	activity	 in	 sound	B	
(C.iii)	around	500s.		

	

Exploring	the	Qualities	of	Regularized	Hidden	Unit	Populations	
To	 better	 understand	 how	 distinctly	 regularized	 hidden	 unit	 populations	 give	 rise	 to	
decent,	 unsupervised	 source	 separation,	 a	 series	 of	 analysis	was	 conducted	 that	 showed	
that	G1	and	G2	were	tuned	to	distinct	volume	and	frequency	ranges.		
	

Library	and	Party	Hidden	Units:	Proclivity	to	Representing	Sounds	of	Differing	Volume	
To	explore	whether	one	of	 the	hidden	unit	populations	 (i.e.	G1	and	G2)	reliably	modeled	
the	quieter	sound	while	the	other	predicted	the	louder	one,	the	mean	amplitudes	of	G1	and	
G2’s	predictions	for	all	validation	mixture	sounds	were	calculated.	Figure	13	shows	that	on	
average,	G1	predicted	a	softer	sound	with	a	 lower	mean	amplitude,	while	G2	predicted	a	
louder	one.	Additionally,	when	calculating	SDR	scores	for	each	validation	triplet	example,	
84.03%	of	the	time,	the	better	sound	separation	pairing	occurred	when	G1	was	paired	with	
the	single-speaker	target	sound	with	the	lower	mean	predicted	amplitude.	
	

 
Figure	13:	Amplitude	Difference	between	G1	and	G2’s	Probe	Predictions	

For	 every	 mixture	 in	 the	 validation	 set,	 the	 mean	 amplitude	 predicted	 by	 using	 just	 G1’s	 output	
connections	 (𝜇 = −0.12,𝜎 = 0.12)	as	 well	 as	 that	 predicted	 by	 just	 using	 G2’s	 were	 calculated	 (𝜇 =
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0.12,𝜎 = 0.14).	The	difference	between	the	G1	and	G2	distributions	of	mean	predicted	amplitude	suggests	
that	G1	predicts	the	softer	sound	in	a	mixture,	while	G2	predicts	the	louder	one.	

	

How	low	can	you	go?	Frequency	Tuning	of	Different	Hidden	Unit	Populations	
Analysis	of	the	mean	amplitude	of	the	predictions	using	G1	and	G2	for	each	frequency	band	
revealed	more	complexity.	For	each	of	the	39	log-spaced	frequency	bins	ranging	from	100	
to	8093	Hz,	the	mean	amplitudes	for	all	validation	mixture	sounds	predicted	by	G1	and	G2	
were	calculated	(Figure	14).	The	overall,	mean	amplitudes	predicted	by	G1	and	G2	from	all	
validation	 mixture	 cochleagrams	 at	 each	 frequency	 band	 (Figure	 14b)	 are	 strongly,	
inversely	 related	 (𝑟 = −0.86,𝑝 < 10!! ;	 see	 Figure	 14	 for	 more	 details	 on	 statistical	
testing),	 suggesting	 that	 they	 predict	 distinct	 activity	 at	 each	 frequency	 band	 instead	 of	
predicting	equal	amounts	of	activity	at	each	 frequency	band.	Further	analysis	shows	that	
both	G1’s	and	G2’s	overall	mean	predictions	per-frequency	are	significantly	correlated	 in	
opposite	directions	(𝑟 = −0.36,𝑝 = 0.02	for	G1;	𝑟 = 0.48,𝑝 = 0.002	for	G2)	to	the	values	of	
the	 frequency	 bands	 used.	 These	 opposite-direction	 correlations	 suggest	 that	 G2	 may	
predict	more	high	frequency	activity,	while	G1	predicts	more	low	frequency	activity.		
	
	

	
Figure	14:	Frequency	Differences	between	G1	and	G2	Predictions	and	between	their	Best	Matched	Targets	

D.	 For	 all	 mixtures	 in	 the	 validation	 examples,	 the	 mean	 amplitude	 at	 the	 1425	 Hz	 frequency	 band	
predicted	 by	 G1	 (𝜇 = −0.80,𝜎 = 0.16)	and	 G2	 (𝜇 = 0.92,𝜎 = 0.45)	was	 binned	 into	 a	 histogram.	 The	
difference	 in	 the	 1425	 Hz	 mean	 amplitude	 predictions	 of	 G1	 and	 G2	 suggests	 that	 G2	 predicts	 more	
activity	at	1425	Hz	while	G1	predicts	negative,	activity.	B.	The	mean	amplitude	at	each	frequency	band	
predicted	by	G1	and	G2	was	calculated	 for	all	validation	mixtures,	and	the	mean	and	standard	error	of	
those	 mean	 amplitudes	 at	 each	 frequency	 was	 plotted.	 For	 example,	 from	 A,	 the	 mean	 of	 the	 mean	
amplitudes	predicted	by	G1	at	1425	Hz	is	−0.80,	while	that	of	G2	is	0.92.	While	it	is	hard	to	discern	a	clear	
pattern	between	 frequency	and	G1	or	G2’s	mean	of	mean	predicted	amplitudes,	 for	 frequencies	greater	
than	1300	Hz,	G2	appears	 to	predict	more	positive	activity	 than	G1.	Statistical	 Testing.	Yet,	 inference	
testing	of	computed	correlation	coefficients	suggests	significant	relationships:	the	correlation	coefficient	
between	G1’s	mean	of	mean	amplitudes	per	frequency	band	and	G2’s	is	−0.86	(𝑝 < 10!!),	the	correlation	
coefficient	 between	 the	 frequency	 bands	 and	 G1’s	 per-frequency	 mean	 of	 mean	 amplitudes	 is	−0.36	
(𝑝 = 0.02),	and	the	correlation	coefficient	between	the	frequency	bands	and	G2’s	is	0.48	(𝑝 = 0.002).		

	
	
However,	 Figure	 14b	 suggests	 a	 more	 complex	 situation,	 with	 the	 opposite,	 low-high	
frequency	tuning	of	G1	and	G2	appearing	less	strong	in	the	lower	frequency	bands	between	
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100-800Hz.	 Coupled	 with	 the	 facts	 that	 first,	 G1	 and	 G2’s	 overall	 mean	 predictions	 are	
reliably	inversely	related,	and	second,	cochleagram	activity	is	not	evenly	distributed	across	
frequency	bands	(Supplementary	Figure	24),	this	observation	invites	further	research	in	on	
how	 the	mammalian	 auditory	 system	 separates	 out	 sounds	with	 respect	 to	 frequency	 as	
well	as	how	well	the	frequency	statistics	of	human	speech	and	other	natural	sounds	match	
up	with	the	unsupervised	source	separated	predictions.	
	

A	Tale	of	Many	Relationships:	Predictive	Ability	vs.	Source	Segregation	Capability	vs.	Hidden	
Unit	Population	Regularization	Factors	
Until	now,	the	analysis	described	in	this	dissertation	focused	on	one	fully-connected	model	
with	 distinctly	 regularized	 hidden	 unit	 populations.	 Analyzing	 the	 separate	 hyper-
parameter	searches	for	𝛼	and	𝛽∗,	where	𝛽 = 𝛽∗𝛼	and	𝛼	and	𝛽	are	the	regularization	factors	
on	 G1	 and	 G2,	 reveals	 interesting	 relationships	 among	 supervised	 predictive	 quality,	
unsupervised	source	separation	ability,	and	inter-	and	intra-	hidden	unit	regularization.	
	
Figure	 15a,c,e	 shows	 that,	 as	𝛼 	increases	 from	10!!" 	to	10!! 	while	𝛽∗ = 1.2 ,	 a	 fully	
connected	model	with	hidden	unit	regularization	 improves	 in	 its	source	separation	while	
simultaneously	worsening	 in	 its	 predictive	 ability	 and	 that	 predictive	 power	 and	 source	
segregation	quality	is	significantly	inversely	correlated	as	𝛼	varies	(𝑝 = 0.04).	However,	as	
𝛽∗	varies	 from	2!	to	2!	while	𝛼 = 10!!,	Figure	15b,d,f	suggests	that	an	optimum	𝛽∗	can	be	
found	 and	 that	 predictive	 ability	 and	 sound	 separation	 capacity	 are	 strongly,	 positively	
correlated	as	𝛽∗	varies	(𝑝 = 0.02).	
	
Intuitively,	 as	𝛼	increases,	 the	 amount	 of	 regularization	 on	 both	 hidden	 unit	 populations	
increase	 and	 the	𝛽∗ = 1.2	factor	 difference	 in	 regularization	 appears	 to	 be	 enough	 to	
improve	 source	 separation	quality	when	𝛼	is	 strong	 enough.	Additionally,	 it	makes	 sense	
that	 more	 hidden	 unit	 regularization	 with	 increased	𝛼	would	 restrict	 the	 hidden	 units’	
ability	to	predict	the	future	because	their	activity	is	being	penalized.		
	
However,	 the	 clear	 optimal	𝛽∗	and	 positive	 relationship	 between	 predictive	 quality	 and	
source	segregation	ability	in	the	𝛽∗-varying	search	is	more	challenging	to	unify.	Recall	that	
𝛽∗	describes	relatively	how	much	G1	and	G2	are	regularized	differently.	With	a	relatively	
small	𝛼 = 10!!,	 it	makes	sense	 that	 small	𝛽∗	values	yield	poor	source	separation	because	
the	combination	of	weak	overall	regularization	by	𝛼	and	weak	differentiated	regularization	
by	𝛽∗	is	 insufficient	 to	 produce	 distinct	 predictions.	 It	 could	 be	 plausible	 that	 the	 target	
single-speaker	 sounds	 are	 similar	 enough	 that	 a	 large	𝛽∗	drives	 the	 predictions	 too	 far	
apart	 and	 thus	worsens	 source	 separation	 capacity	 because	 one	 prediction	 is	 too	 far	 off	
from	 its	 target.	 The	 positive	 relationship	 between	 prediction	 and	 source	 segregation	
quality	 could	 be	 explained	 by	 the	 idea	 that,	 when	 the	 right	𝛽∗	is	 found	 to	 appropriately	
differentiate	G1	and	G2,	not	only	does	sound	separation	improve	but	predictive	ability	does	
as	well	because	an	improved	ability	to	represent	different	sound	sources	leads	to	improved	
predictions.	However,	further	research	on	the	effects	of	hidden	unit	regularization	factors,	
including	2D	and	finer-grain	𝛼	and	𝛽∗	grid	searches,	is	needed	to	test	these	hypotheses.	
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Figure	15:	Relating	Source	Separation,	“Predictive”-ness,	and	Hidden	Unit	Regularization	Factors	(FC)	

Left	Column	(A,C,E).	10	FC	models	with	explicit	hidden	unit	populations	were	trained	on	the	predictive	
task	with	 the	 same	 parameters	 as	 the	 one	 used	 for	 in-depth	 analysis,	 except	 that	𝛼 ∈ {10!!",… , 10!!}	
and	𝛽 = 1.2𝛼.	Two	models	(𝛼 = 10!!and	𝛼 = 10!!)	yielded	invalid	NaN	(not	a	number)	predictions	after	
training	and	were	excluded.	A.	The	 log	value	of	each	model’s	𝛼	value	was	plotted	against	 its	SDR	probe	
metric	 –	 the	mean	SDR	 score	 over	all	 validation	 triplet	 examples	 and	a	measure	quantifies	 how	well	 a	
model	 performs	 on	 unsupervised	 source	 separation.	 A	 positive	 SDR	 score,	 which	 models	 with	𝛼 ∈
{10!!, 10!!, 10!!}	yielded,	 suggests	 that	more	 signal	 than	 noise	 is	 captured	 in	 the	 optimally	 predicted	
source	separation.	C.	The	log	value	of	each	model’s	𝛼	value	was	plotted	against	its	validation	loss	on	the	
supervised	 predictive	 task.	 The	 predictive	 loss	 palpably	 worsens	 for	 models	 with	𝛼 ∈ {10!!, 10!!} .	
Coupled	with	observations	from	A,	there	appears	to	be	a	negative	relationship	between	predictive	power	
and	source	separation	ability	as	𝛼	varies.	E.	Predictive	loss	was	plotted	against	SDR	score	for	the	8	well-
defined,	𝛼-varying	FC	models;	the	computed	correlation	coefficient	and	a	two-sided	t-test	testing	the	null	
hypothesis	 that	 the	 fitted	 line	 has	 slope	 =	 0	 suggests	 that,	 as	𝛼	varies,	 “predictive”-ness	 worsens	 (i.e.	
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predictive	 validation	 loss	 increases)	 as	 source	 separation	 improves	 (i.e.	 SDR	 increases).	 Right	 Column	
(B,D,F).	10	FC	models	with	explicit	hidden	unit	populations	were	trained	on	the	predictive	task	with	the	
default	FC	hyper-parameters	 (with	𝛼 = 10!!),	while	𝛽	varies, 𝛽 ∈ {2!𝛼,… , 2!𝛼}	.	 For	 simplicity,	 let	beta	
factor	𝛽∗ ∈ {2!,… , 2!}	refer	 to	 the	 scaling	 factor	 on	𝛼.	B.	 Each	model’s	𝛽∗	value	was	 plotted	 against	 its	
SDR	probe	metric;	with	only	the	𝛽∗ = 16 model,	which	is	the	model	that	was	analyzed	in-depth,	yielding	a	
positive	 SDR	 score.	D.	Each	model’s	𝛽∗	value	was	plotted	against	 its	 predictive	 validation	 loss,	with	 the	
best	 loss	 occurring	 at	𝛽∗ = 16 .	 Coupled	 with	 observations	 from	 A,	 there	 appears	 to	 be	 a	 positive	
relationship	between	predictive	power	and	 source	 separation	ability	as	𝛽∗	varies.	F.	Predictive	 loss	was	
plotted	against	SDR	score	for	the	10	𝛽∗-varying	FC	models;	statistical	testing	(same	as	that	for	E)	suggests	
that	“predictive”-ness	and	source	separation	are	positively	linked	as	𝛽∗	varies.	

	

Can	You	Hear	Me	Crystal	Clear?	Room	for	Improvement	in	Unsupervised	Sound	Source	
Separation	
	
Further	 analysis	 on	 the	 FC	 network	 with	𝛼 = 10!!	and	𝛽∗ = 16	shows	 that	 there	 is	 still	
ample	room	for	improving	its	unsupervised	source	separation.		Recall	that	a	negative	SDR	
measure	suggests	 that	 there	 is	more	error	 than	signal	captured	 in	 the	source	separation.	
49.4%	 of	 the	 720	 validation	 triplets	 yielded	 negative	 overall	 SDR	 scores,	 implying	 that	
nearly	 half	 the	 separated	 predictions	 contained	 more	 error	 than	 signal	 (Supplementary	
Figure	25).	Depicting	 the	 three	examples	with	 the	 top	 three	worst	SDR	scores,	Figure	16	
shows	 that	 either	 source	 separation	 is	 hard	 to	 observe	 by	 the	 naked	 eye	 or	 the	 optimal	
pairing	between	G1	and	G2	predictions	 to	sound	A	and	B	 targets	given	by	 the	SDR	score	
seems	counter-intuitive	to	a	human	viewer	(Figure	16b).	
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Figure	16:	Examples	of	Unsupervised	Source	Separation	with	the	Worst	SDR	Probe	Measures	(SDR)	

For	each	example	(A,	B,	C),	the	target	cochleagrams	for	the	mixture	(i),	source	A	(ii),	and	source	B	(iii)	is	
given	by	 the	 first	 row,	and	 the	predicted	cochleagrams	using	 the	output	connections	of	all	hidden	units	
(iv),	of	only	G1	hidden	units	(v),	and	of	only	G2	hidden	units	(vi)	is	given	by	the	second	row.	A.	This	triplet	
yielded	the	worst	SDR	probe	score	of	−2.83 (𝑀! = −2.83,𝑀! = −6.72),	with	the	parallel	pairing	(G1-A,	
G2-B)	 producing	 the	 better	 source	 separation	 output	 because	𝑀! > 𝑀! ;	 however,	 it	 is	 qualitatively	
difficult	to	determine	which	pairing	produces	the	best	source	separation,	as	both	G1	(A.v)	and	G2	(A.vi)	
appear	to	predict	parts	of	sound	B’s	activity	(A.iii).	B.	The	triplet	with	the	second	worst	SDR	probe	score	of	
−2.41 (𝑀! = −2.41,𝑀! = −3.88),	where	the	parallel	pairing	yielded	the	better	separation.	Qualitatively,	
the	cross	pairing	actually	looks	better,	as	G1	(B.v)	appears	to	predict	the	spanning	frequency	activity	in	
the	 first	600	ms	of	 sound	B	 (B.iii).	However,	using	 the	SDR	measure,	G1	barely	predicts	 sound	B	better	
than	G2	(𝑆𝐷𝑅 𝐺1,𝐵 = 1.49,	𝑆𝐷𝑅 𝐺2,𝐵 = 1.48).	C.	The	triplet	with	the	third	worst	SDR	probe	score	of	
−2.37 (𝑀! = −2.37,𝑀! = −5.86),	where	 the	 parallel	 pairing	 yielded	 the	 better	 source	 separation.	 Yet,	
both	G1	(C.v)	and	G2	(C.vi)	appear	to	faintly	predict	frequency-spanning	activity	in	sound	B	(C.iii).		

	

Performance	using	RNNs	
	
Like	 the	𝛼 = 10!!,	𝛽∗ = 16	FC	model,	 a	 RNN	model	with	 the	 following	 hyper-parameters	
was	found	to	have	a	competitive	predictive	loss	from	a	series	of	grid	searches	and	chosen	
to	be	analyzed	in-depth	for	its	sound	source	capabilities:	
	

- Update	function:	adam	
- Non-linearity:	tanh	
- L1	regularization	factor	on	network	weights:	10-4	
- Regularization	 factors	 for	 explicit	 hidden	 unit	 populations	 (G1,	 G2,	 H):		

𝛼 = 10!!,	𝛽 = 2𝛼,	𝛾 =
! |!!|

|!|!

!!
	

	
However,	 unlike	 the	 FC	model	 analyzed	 in-depth,	 the	 RNN’s	 overall	 SDR	 score	 of	−0.38	
suggests	that	the	unsupervised	source	separation	by	its	regularized	G1	and	G2	populations	
contained	more	error	than	signal.	Furthermore,	Supplementary	Figure	26a	explains	how	its	
SDR	 score	 compared	 poorly	 to	 scores	 generated	 by	 10,000	 random	 splits	 of	 two	 hidden	
unit	groups	in	a	permutation	test	(𝑝 = 0.50),	while	Supplementary	Figure	26b	shows	that	
only	27.3%	of	the	720	validation	triplets	earned	positive	SDR	scores	when	using	the	RNN	
for	source	separation.	In	comparison,	the	FC	model	had	an	overall	SDR	score	of	0.17,	with	
50.6%	of	examples	earning	positive	scores,	and	performed	significantly	better	than	random	
hidden	unit	groups	(𝑝 = 0.035).	
	
Figure	17	shows	 the	relationships	between	predictive	ability,	 source	separation	capacity,	
and	the	hidden	unit	regularization	factors	𝛼	and	𝛽∗;	Figure	17a,c	suggests	a	similar	trend	as	
that	 observed	 in	 the	𝛼-varying	 grid	 search	 for	 FC	models	 (Figure	 15)	 that,	 as	𝛼	increase,	
predictive	 power	 worsens	 while	 source	 separation	 capacity	 improves,	 until	 very	 large	
𝛼 = 10!!,	when	it	worsens	again.	However,	unlike	the	𝑝 <  0.05	relationships	identified	in	
the	𝛼	and	𝛽∗-varying	FC	grid	searches,	Figure	17e,f	show	that	the	RNN	trends	fail	to	survive	
significance	 testing.	Furthermore,	 the	 lack	of	a	 clear	 trend	between	𝛽∗	and	 the	SDR	score	
(Figure	 17b)	 suggests	 that	 the	𝛼 = 10!!	held	 constant	 in	 the	𝛽∗-varying	 grid	 search	was	
not	a	suitable	parameter	 for	the	RNN.	One	would	expect	RNNs	to	perform	better	than	FC	



	 34	

models	 on	 tasks	 involving	 temporal	 data;	 however,	 they	 are	 known	 to	 be	 harder	 to	
initialize	(Le	et	al.,	2015),	so	 in	addition	to	performing	more	dense	hyper-parameter	grid	
searches	for	well-paired	𝛼	and	𝛽∗,	further	work	should	be	done	to	initialize	the	RNN	well.	
	
	

	
Figure	17:	Relating	Source	Separation,	“Predictive”-ness,	and	Hidden	Unit	Regularization	Factors	(RNN)	

Left	Column	(A,C,E).	10	RNN	models	with	explicit	hidden	unit	populations	were	trained	on	the	predictive	
task	 with	 the	 same	 hyper-parameters	 as	 the	 one	 used	 for	 in-depth	 analysis,	 except	 that	
𝛼 ∈ {10!!",… , 10!!}	and	𝛽 = 1.2𝛼.	A.	The	log	value	of	each	model’s	𝛼	value	was	plotted	against	its	SDR	
probe	metric	–	the	mean	SDR	score	over	all	validation	triplet	examples	and	a	measure	quantifies	how	well	
a	model	performs	on	unsupervised	source	separation.	A	positive	SDR	score,	which	models	with	𝛼 ≥ 10!!	
yielded	(although	the	𝛼 = 10!!model’s	score	barely	exceeded	zero),	suggests	that	more	signal	than	noise	
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is	 captured	 in	 the	 optimally	 predicted	 source	 separation.	C.	 The	 log	 value	 of	 each	model’s	𝛼	value	was	
plotted	against	its	validation	loss	on	the	supervised	predictive	task.	The	predictive	loss	palpably	worsens	
for	models	with	𝛼 ≥ 10!!.	Coupled	with	observations	from	A,	there	appears	to	be	a	negative	relationship	
between	predictive	power	and	source	separation	ability	as	𝛼	varies.	E.	Predictive	loss	was	plotted	against	
SDR	score	 for	 the	10,	𝛼-varying	RNN	models;	 the	computed	correlation	coefficient	and	a	 corresponding	
two-sided	 t-test	 testing	 the	 null	 hypothesis	 that	 the	 fitted	 line	 has	 slope	 =	 0	 were	 not	 statistically	
significant	 to	 affirm	 the	 hypothesis	 that,	 as	𝛼 	varies	 in	 RNN	 models,	 “predictive”-ness	 worsens	 (i.e.	
predictive	 validation	 loss	 increases)	 as	 source	 separation	 improves	 (i.e.	 SDR	 increases).	 Right	 Column	
(B,D,F).	10	RNN	models	with	explicit	hidden	unit	populations	were	trained	on	the	predictive	task	with	the	
default	 RNN	 hyper-parameters	 (with	𝛼 = 10!!),	 while	𝛽 	varies, 𝛽 ∈ {2!𝛼,… , 2!𝛼}	.	 For	 simplicity,	 let	
beta	factor	𝛽∗ ∈ {2!,… , 2!}	refer	to	the	scaling	factor	on	𝛼.	B.	Each	model’s	𝛽∗	value	was	plotted	against	
its	 SDR	probe	metric,	with	no	 easily	 observable	 relationship	between	𝛽∗and	 source	 separation.	D.	Each	
model’s	𝛽∗	value	was	plotted	against	its	predictive	validation	loss,	with	the	best	loss	occurring	at	𝛽∗ = 2	
(the	𝛽∗ = 2	RNN	model	was	used	for	in-depth	analysis).	F.	Predictive	loss	was	plotted	against	SDR	score	
for	 the	10	𝛽∗-varying	RNN	models;	 statistical	 testing	 (same	as	 that	 for	E)	 did	not	 show	any	 significant	
relationship	between	“predictive”-ness	and	source	separation	as	𝛽∗	varies	in	these	RNN	models.	These	set	
of	 sub-figures	 can	be	compared	 to	 those	 in	Figure	15	respectively,	which	contain	corresponding	 figures	
using	𝛼	and	𝛽∗-varying	FC	models.	

	

FC	and	RNN	Models	with	the	Best	Sound	Separation	but	Poor	Predictive	Ability	
Figure	 15	 and	 Figure	 17	 identified	 FC	 and	 RNN	 models	 respectively	 with	 better	 sound	
separation	(but	poorer	predictive	power)	than	the	models	analyzed	in-depth.	Good	sound	
separation	 examples	 from	 the	models	with	 the	 best	 sound	 separation	 –	 the	𝛼 = 10!!	FC		
and	𝛼 = 10!!	RNN	models	with	𝛽∗ = 1.2	for	both	–	are	 shown	 in	Figure	18.	Compared	 to	
the	examples	for	the	𝛼 = 10!!,𝛽∗ = 16	FC	model	(Figure	12),	the	predictions	made	by	G1	
and	G2	are	more	distinct	from	one	other,	which	makes	sense	because	a	larger	𝛼	increases	
the	 amount	 of	 regularization	 on	 and	 competition	 between	 the	 two	 populations.	
Nevertheless,	 the	 predictive	 qualities	 of	 superior	 sound-separating	 networks	 are	 clearly	
worse,	as	the	predictions	are	blurrier	and	coarser.	Comparing	between	these	two	superior	
sound-separating	 FC	 and	 RNN	 networks,	 the	 fully-connected	 model	 outperforms	 the	
recurrent	one	both	in	its	predictive	ability,	with	a	validation	loss	of	67.82	compared	to	the	
RNN’s	loss	of	77.50,	and	in	its	source	separation	capacity,	with	a	better	overall	SDR	score	of	
1.73	 compared	 to	 the	RNN’s	 score	of	 1.54.	This	 surprising	outperformance	 suggests	 that	
further	work	 can	 be	 done	 to	 improve	 the	 RNN	 in	 its	 initialization	 and	 hyper-parameter	
settings.	Nevertheless,	 the	strength	of	 these	superior,	 source	separating	models	points	 to	
the	promise	of	this	paradigm	for	using	hidden	units	to	perform	unsupervised	sound	source	
separation	 as	well	 as	 of	 the	network	 extension	of	 distinctly	 regularization	 the	 activity	 of	
certain	hidden	units.	
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Figure	18:	Source	Separation	Examples	for	the	FC	and	RNN	Models	from	the	𝜶-varying	Grid	Search	with	the	Best	

Mean	SDR	Probe	Score	

For	each	example	(A,	B),	 the	target	cochleagrams	for	the	mixture	(i),	source	A	(ii),	and	source	B	(iii)	 is	
given	by	 the	 first	 row,	and	 the	predicted	cochleagrams	using	 the	output	connections	of	all	hidden	units	
(iv),	of	only	G1	hidden	units	(v),	and	of	only	G2	hidden	units	(vi)	is	given	by	the	second	row.	A.	Identified	in	
an	𝛼-varying	grid	search	described	in	Figure	15	as	the	FC	model	with	the	best	SDR	score	of	1.73,	a	FC	in-
depth-analysis	model	with	𝛼 = 10!!,	𝛽 = 1.2𝛼,	and	otherwise	default	FC	hyper-parameters	was	used	to	
probe	 the	 validation	 set	 for	 its	 source	 separation	 performance.	 This	 triplet	 yielded	 the	 best	 SDR	 probe	
score	of	7.08 (𝑀! = 3.22,𝑀! = 7.08),	with	the	cross	pairing	yielding	the	better	source	separation	because	
𝑀! > 𝑀!.	 Qualitatively,	 the	 cross	 pairing	 is	 noticeably	 better,	 as	 the	 low-frequency	 activity	 in	 sound	 B	
(A.iii)	is	predicted	by	G1	hidden	units	(A.v),	whereas	the	frequency-spanning	activity	near	2s	in	sound	A	
(A.ii)	 similarly	 appears	 in	 G2’s	 prediction	 (A.vi).	B.	 Identified	 in	 an	𝛼-varying	 grid	 search	 described	 in	
Figure	 17	 as	 the	 RNN	 in-depth-analysis	 model	 with	 the	 best	 SDR	 score	 of	1.54,	 a	 RNN	 model	 with	
𝛼 = 10!!,	𝛽 = 1.2𝛼,	and	otherwise	default	RNN	hyper-parameters	was	used	 to	probe	 the	validation	set	
for	its	source	separation	performance.		This	triplet	yielded	the	fourth3	best	SDR	probe	score	of	3.75 (𝑀! =
−7.04,𝑀! = 3.75),	where	the	cross	pairing	yielded	the	better	separation.	Qualitatively,	the	cross	pairing	

																																																								
3	The	fourth	best	SDR	probe	score	example	was	chosen	over	those	corresponding	to	the	first,	second,	or	third	
for	illustrative	purposes,	the	three	other	better	examples	did	not	have	many	defining	amplitude	and	
frequency	characteristics.		
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displays	some	clear	source	separation	characteristics:	G1	(B.v)	predicts	well	the	early	broadband	activity	
in	 the	 first	 half	 of	 sound	 B	 (B.iii).	 While	 G2	 predicts	 some	 extraneous	 activity	 along	 with	 the	 high	
frequency	activity	right	before	2s	in	sound	A,	it	is	notable	that	the	G1	(v)	and	G2	(vi)	predictions	in	both	A	
and	B	are	more	distinct	from	each	other	than	those	generated	by	the	in-depth-analysis	FC	model	(Figure	
12).		

	

Biologically-Consistent	Spectro-Temporal	Receptive	Fields	(STRFs)	of	Hidden	Units	
Without	 constraints	 enforcing	 biological	 characteristics,	 the	 hidden	 units	 of	 networks	
trained	on	the	predictive	tasks	exhibited	realistic	receptive	fields	and	included	features	like	
lagging	and	flanking	inhibition	(Figure	19).	Singer	et	al.,	n.d.	first	showed	that	naturalistic	
receptive	 fields	 arose	 in	 fully-connected	 networks	 trained	 on	 both	 visual	 and	 auditory	
predictive	 tasks;	 this	 dissertation	 not	 only	 confirms	 that	 result	 in	 FC	 models	 but	 also	
demonstrates	 that	predictive	RNNs	also	exhibit	 the	 same	biologically-consistent	qualities	
(Figure	19c).	Figure	19	includes	receptive	field	visualizations	that	are	derived	by	reshaping	
the	 input	 and	 output	 weight	 matrices	 of	 neural	 networks;	 however,	 a	 more	 accurate	
visualization	 of	 RNN	 receptive	 fields	 would	 incorporate	 its	 recurrent	 connections	 by	
visualizing	the	best	linear	mapping	from	cochleagram	to	hidden	unit	activity.	These	results	
bolster	the	idea	that	mammalian	receptive	fields	are	tuned	to	qualities	most	important	for	
predicting	the	future.	
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Figure	19:	STRFs	of	Real	Ferret	Neurons	and	FC	and	RNN	Hidden	Units	

A.	STRFs	from	recorded	auditory	cortex	neurons	in	ferrets	(Singer	et	al.,	n.d.).	Two	examples	of	flanking	
inhibition,	where	there	is	excitatory	and	inhibitory	activity	in	nearby,	flanking	frequency	bands,	is	boxed	
in	grey.	The	other	 four	examples	demonstrate	 lagging	excitation,	where	exciting	activity	quickly	 follows	
inhibitory	activity.	B	and	C.	Visualizations	of	the	fan-in	and	fan-out	activity	of	6	hidden	units	from	the	in-
depth-analysis	FC	model	(B)	and	12	hidden	units	from	the	in-depth-analysis	RNN	model	(C)	were	selected	
for	their	biologically-consistent	qualities.	In	both	B	and	C,	hidden	units	with	flanking	inhibition	are	boxed	
in	black.	Non-boxed	examples	exhibit	 lagging	inhibition	or	excitation,	wherein	excitation	or	inhibition	is	
quickly	 followed	 by	 inhibition	 or	 excitation	 respectively.	 Note	 that	 activity	 is	 spatially	 and	 temporally	
tuned,	as	in	real	neurons	(A).		

	

Biologically-Consistent,	Selective	Hidden	Units	
In	addition	to	having	realistic	receptive	fields,	the	hidden	units	of	the	predictive	networks	
with	 distinctly	 regularized	 hidden	 unit	 populations	 also	 showed	 a	 range	 of	 selectivity	
similar	 to	 that	 observed	 in	 primary	 auditory	 cortex	 neurons	 of	 ferrets.	 Figure	 20a	
demonstrates	 how	 a	 real,	 “selective”	 neuron	 reliably	 responds	 to	 a	 mixture	 and	 its	
component	sounds:	its	responses	to	one	component	sound	are	highly	correlated	to	those	to	
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its	mixture	 sound	but	 its	 responses	 to	 the	 other	 component	 sound	 are	 not	 correlated	 to	
those	of	 its	mixture	sound.	Observations	of	 such	neurons	 from	Harper	et	al.,	n.d.	 suggest	
that	 some	 primary	 auditory	 cortex	 neurons	 play	 a	 role	 in	 sound	 selection	 by	 reliably	
responding	to	one	single	sound	but	not	the	other	in	a	similar	fashion	to	how	they	respond	
to	 the	 mixture	 of	 the	 two	 sounds.	 Figure	 20b	 shows	 that	 a	 “non-selective”	 neuron’s	
responses	to	two	individual	component	sounds	are	similarly	correlated	to	its	responses	to	
the	mixture	sound.	

	

	
Figure	20:	High	and	Low	Selective	Auditory	Cortex	Neurons	from	Anesthetized	Ferrets	

The	 set	 of	 plots	 in	 A	 and	 B	 each	 corresponds	 to	 one	 neuron	 recorded	 in	 the	 auditory	 cortex	 of	 an	
anesthetized	ferret.	Each	plot	represents	a	distinct	triplet	set	of	sounds	(sound	1,	sound	2,	and	mixture	of	
sound	 1	 and	 2),	 each	 of	 which	 was	 played	 to	 the	 ferret	 20	 times.	 For	 each	 repeat,	 the	 correlation	
coefficient	was	 calculated	between	 the	peristimulus	 time	histogram	 (PSTH)	 (Figure	11d)	of	 the	neuron	
when	 sound	 1	 is	 played	 and	 the	 mean	 PSTH	 of	 the	 neuron	 when	 the	 mixture	 is	 played.	 Correlation	
coefficients	between	PSTHs	corresponding	to	20	repeats	of	sound	2	and	the	mean	mixture	PSTH	were	also	
calculated,	and	the	correlations	were	plotted	against	each	other.	The	neuron	in	A	demonstrates	that	it’s	
selective	to	a	single	sound	because	for	a	given	triplet	of	sounds,	it	reliably	shows	no	correlation	between	
one	sound	and	the	mixture	yet	consistent	correlation	between	the	other	sound	and	the	mixture;	that	is,	its	
responses	in	a	similar	way	to	one	sound	as	it	does	to	the	mixture	but	not	in	a	correlated	way	for	the	other	
sound.	 In	 contrast,	 the	 neuron	 in	 B	 exhibits	 low	 selectivity	 because	 there	 are	 few	 instances	 where	 it	
selectively	responds	to	one	sound	in	a	similar	way	to	the	mixture	but	not	the	other	sound.	
	

Figure	21	shows	that	both	FC	and	RNN	predictive	networks	with	hidden	unit	regularization	
exhibits	similar	patterns	of	low	and	high	selectivity	as	real	neurons.	The	examples	of	high	
selectivity	in	the	hidden	units	expressed	selectivity	differently	from	those	in	real	neurons	
in	 that	 strong	 correlations	 between	 a	 single	 sound	 and	 its	 mixture	 were	 more	 often	
observed	 (i.e.	 points	 near	 (1,0)	 and	 (0,1)	 in	 Figure	 21’s	 visualizations)	 compared	 to	 no	
correlation	 between	 one	 sound	 and	 the	 mixture	 (i.e.	 points	 along	 the	 x-	 and	 y-	 axes	 in	
Figure	20’s	plots).	Similar	patterns	of	high	and	low	selectivity	were	also	found	in	typically-
defined	FC	and	RNN	networks,	suggesting	that	an	efficient	encoding	of	predictive	qualities	
of	sound	may	also	encode	some	representation	of	separated	sounds.		
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Figure	21:	Top	3	High	and	Low	Selective	Hidden	Units	in	FC	and	RNN	models	

The	three	hidden	units	with	the	highest	aggregate	selectivity	scores	 in	 the	 in-depth-analysis	FC	(A)	and	
RNN	(B)	model	are	visualized	 in	 the	 top	rows	 (i,ii,iii)	of	 their	 respective	panels,	while	 the	 three	hidden	
units	with	the	lowest	aggregate	selectivity	scores	are	visualized	in	the	panel’s	bottom	rows	(iv,v,vi).	For	
every	validation	triplet	example,	the	correlation	between	sound	A	and	the	mixture	AB	is	plotted	against	
that	between	sound	B	and	the	mixture	AB.	Having	many	coordinates	fall	near	(1,0)	or	(0,1)	suggests	that	
the	 hidden	 unit	 is	 selective	 for	 a	 single	 sound	 because	 it	 is	 highly	 correlated	 with	 one	 sound	 and	 not	
correlated	with	the	other	sound	in	a	given	example.	Particularly	in	the	FC	model,	the	most	selective	hidden	
units	show	similar	qualities	to	the	selective	AC	neurons	in	ferrets	(Figure	20)	of	having	many	points	fall	
along	the	x-	or	y-	axis.	
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In	the	FC	and	RNN	models	with	the	best	source	separation	scores	from	the	𝛼-varying	grid	
search,	 strong	 source	 separation	was	 linked	 to	 different	 qualities	 of	 the	 network.	 In	 the	
𝛼 = 10!!,𝛽 = 1.2	FC	model,	only	a	little	more	than	10	of	the	80	hidden	units	with	output	
connections	were	being	used:	the	other	units	had	near-zero	selectivity	and	random-looking	
receptive	 fields.	 However,	 of	 the	 active	 units,	 at	 least	 5	 of	 them	 had	 strong	 selectivity	
qualities,	 with	 aggregate	 selectivity	 scores	 greater	 than	 0.3.	 In	 contrast,	 in	 the	 RNN,	 no	
single	 or	 few	 hidden	 units	 stood	 out	 with	 strong	 selectivity;	 all	 units	 had	 aggregate	
selectivity	scores	between	0.10	and	0.19.	These	observations	suggest	that	the	mechanisms	
of	 sound	 separation	 in	 FC	 and	 RNN	models	 may	 differ	 in	 how	 they	 use	 selective	 units;	
furthermore,	 the	 surprisingly	phenomenon	of	 a	 few	hidden	units	 contributing	 to	most	of	
the	 FC	 network’s	 output	 suggests	 that	 strong	 selective	 units	 are	 important	 for	 strong	
source	separation.	
	
For	 the	 in-depth	 analysis	 FC	 and	 RNN	models,	 again	 there	 are	 different	 distributions	 of	
selectivity.	Supplementary	Figure	27a	shows	that	 the	FC	model	had	more	high	selectivity	
units	than	the	RNN	model,	which	may	have	contributed	to	the	FC	model’s	superior	sound	
separation	ability.	Supplementary	Figure	27b,c	show	that	the	distribution	of	selective	units	
between	the	FC	and	RNN	models	differed,	with	the	RNN’s	most	selective	units	coming	from	
the	H	population	that	has	no	output	connections,	only	recurrent	ones	to	other	hidden	units.	
This	observation	suggests	that	the	recurrent	connections	in	the	RNN’s	H	population	may	be	
modulating	the	G1	and	G2	populations	and	thereby	using	the	H	population’s	selectivity	to	
improve	 sound	 separation.	However,	 further	 research	 into	 the	 relationship	 between	 and	
mechanisms	of	selectivity	and	sound	separation	must	be	conducted	in	order	to	test	these	
hypotheses.	
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Discussion	(max.	2000	words)	
This	work	demonstrates	the	promise	of	a	novel	paradigm	for	unsupervised	sound	source	
separation	using	distinctly	 regularized	populations	of	hidden	units	 in	a	predictive	neural	
network.	Furthermore,	 it	 shows	 that	biologically-consistent	 receptive	 fields	 and	 selective	
characteristics	can	be	identified	in	such	network’s	hidden	units.	
	

Implications	
These	 results	 have	 several	 implications	 on	 the	 existing	 literature	 on	 predictive	 coding,	
sound	 source	 separation,	 and	 neural	 networks.	 The	 promising,	 initial	 success	 of	 the	
presented	 unsupervised	 sound	 source	 separation	 paradigm	 that	 trains	 networks	 on	 a	
predictive	task	suggests	that	predictive	coding	may	not	only	capture	biologically-consistent	
characteristics	 such	 as	 realistic	 receptive	 fields	 (Singer	 et	 al.,	 n.d.)	 and	 selective	neurons	
(Harper	et	al.,	n.d.)	but	also	encode	information	necessary	not	only	for	prediction	but	also	
sound	 separation,	 a	 biologically-necessary	 ability.	 This	 work	 represents	 the	 first	 time	
predictive	coding	was	demonstrated	to	prove	useful	another	essential	task	for	mammalian	
survival.		
	
Additionally,	 the	 presented	 paradigm	 is	 the	 first	 known	 generalizable	 unsupervised	
approach;	the	only	other	known	unsupervised	work	used	top-down,	hand-tuned	filters	that	
relied	 on	 harmonic	 qualities	 in	 sounds,	 thereby	 limiting	 its	 application	 to	 tonal	 sounds,	
which	 excludes	 many	 natural	 sounds	 (Elhilali	 and	 Shamma,	 2008).	 In	 contrast,	 our	
approach	 is	 far	more	unconstrained	and	 thus	 can	 accommodate	 a	 greater,	more	 realistic	
diversity	of	sounds.	
	
Finally,	 as	 neural	 networks	 have	 gained	 prominence	 for	 their	 ability	 to	 perform	well	 on	
well-defined,	 supervised	 tasks	 like	 image	 recognition,	 the	 machine	 learning	 research	
community	is	interested	in	exploring	whether	neural	networks	can	be	used	to	tackle	more	
general	problems	like	continual	knowledge	acquisition	and	representation	that	may	be	less	
defined	 or	 unsupervised	 (Mitchell	 et	 al.,	 2015).	 Regularizing	 different	 populations	 of	
hidden	units	may	be	a	generalizable	technique	and	be	used	to	retool	trained	networks	on	
supervised	tasks	to	perform	related	unsupervised	ones.	For	instance,	a	visual	analog	to	the	
auditory	 problem	of	 source	 separation	 is	 object	 segmentation	 in	 images;	 variants	 of	 this	
regularization	 technique	may	be	able	 to	 localize	 the	different	objects	 in	an	 image	using	a	
network	trained	video	frame	prediction.	
	

Future	Directions	
There	are	several	 research	directions	 to	better	understand	 the	 limits	and	mechanisms	of	
this	 unsupervised	 source	 separation	 paradigm	 as	 well	 as	 to	 explore	 other	 network	
extensions	 besides	 or	 in	 addition	 to	 regularization	 hidden	 unit	 populations.	 Further	
computational	 work	 should	 also	 be	 done	 in	 close	 collaboration	 with	 similarly	 designed	
experimental	 research	 for	 a	 more	 direct	 comparison	 between	 the	 two	 realms.	 The	
experimental	 work	 compared	 to	 in	 this	 dissertation	 used	 different	 datasets	 as	 well	 as	
different	time	and	frequency	bins	(Harper	et	al.,	n.d.;	Singer	et	al.,	n.d.).			
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Optimizing	Performance	
Due	to	time	constraints,	sequential	1D	hyper-parameter	searches	were	used	to	set	𝛼	and	𝛽∗	
parameters	 for	 regularizing	 the	 G1	 and	 G2	 hidden	 unit	 populations.	 To	 both	 better	
understand	the	relationships	𝛼	and	𝛽∗	have	on	predictive	and	source	separation	quality	as	
well	 as	 to	 find	 the	 best	 regularization	 parameters	 that	 perform	 well	 on	 both	 the	
unsupervised	and	supervised	problem,	a	2D	grid	search	for	𝛼	and	𝛽∗	should	be	conducted.		
	
Furthermore,	 it	 was	 surprising	 that	 the	 RNN	 models,	 which	 have	 short-term	 memory	
capacity,	did	not	perform	better	than	the	FC	ones.	It	is	known	that	RNNs	can	be	difficult	to	
initialize;	 thus,	 further	 work	 should	 be	 done	 to	 identify	 the	 best	 parameters	 and	
initialization	 scheme	 for	RNNs	 to	perform	better	 than	FC	models	on	both	 the	 supervised	
predictive	task	as	well	as	the	unsupervised	source	separation	task.	One	such	initialization	
technique	 involves	 initializing	 the	 network’s	 recurrent	 weights	 matrix	 to	 be	 a	 scaled	
identity	matrix	 (Le	et	al.,	2015),	which	proved	promising	 for	 improving	 typically	defined	
RNNs	 but	 was	 not	 tested	 for	 RNNs	 with	 distinctly	 regularized	 hidden	 unit	 populations.	
Another	RNN	model	that	allows	for	more	stable	training	and	longer	memory	capacity	is	the	
Long	Short-Term	Memory	(LSTM)	network	(Hochreiter	and	Schmidhuber,	1997).	Inspired	
by	human	working	memory,	it	has	become	the	main	RNN	model	used	in	machine	learning	
research.	Initial	explorations	for	this	project	included	LSTMs	but	were	not	continued	due	to	
limited	computing	power,	yet	future	work	should	include	LSTM	models.	
	

Varying	the	Dataset	and	Model	Extension	
Another	avenue	to	explore	includes	varying	the	dataset.	First,	to	compare	our	unsupervised	
paradigm	 to	 current	 state-of-the-art	 results,	 the	 classic	 sound	 separation	 datasets	 for	
speech	 separation	between	 a	male	 and	 female	 speaker	 (Kabal,	 2002),	 singing	 separation	
between	 a	 singer	 and	 background	 music	 (Hsu	 and	 Jang,	 2010),	 and	 speech	 denoising	
between	a	human	speaker	and	background	noise	(Victor	et	al.,	1990)	should	be	used.	In	a	
few	 respects,	 our	 dataset	 and	 set-up	 were	 more	 difficult	 than	 the	 aforementioned	
problems:	for	instance,	our	speech	separation	dataset	included	both	two-speaker	mixtures	
without	regard	to	gender	as	well	as	one-speaker	sounds.	The	robustness	of	the	model	can	
also	 be	 tested	 by	 observing	 how	 much	 results	 deteriorate	 when	 increasing	 amounts	 of	
white	noise,	which	would	be	hard	to	predict,	is	added	to	the	dataset.	
	
The	limits	of	the	paradigm	can	be	tested	by	varying	the	ratio	of	mixtures	and	single	sources	
in	the	training	set	as	well	as	by	increasing	the	number	of	single	sources	in	a	mixture	and	
observing	whether	G1	and	G2	separate	out	the	two	loudest	sounds.	The	generalizability	of	
this	 paradigm	 in	 this	 respect	 can	 also	 be	 tested	 by	 varying	 the	 number	 of	 and	 ratio	 of	
hidden	 units	 among	 hidden	 unit	 populations	 (i.e.	 G1,	 G2,	 G3,	 …)	 while	 increasing	 and	
varying	the	number	of	sources	in	mixtures	in	the	training	dataset.	
	
Finally,	 more	 complex	 networks	 with	 multiple	 layers	 –	 and	 incorporating	 distinctly	
regularized	 hidden	 unit	 populations	 into	 them	 –	 should	 be	 explored.	 Some	 evidence	
suggests	 that	 source	 selectivity	 arises	 and	 increase	 more	 downstream	 in	 the	 auditory	
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cortex	(Zion	Golumbic	et	al.,	2013).	Thus,	in	addition	to	exploring	whether	additional	layers	
increasing	unsupervised	source	separation	performance,	the	selectivity	of	hidden	units	 in	
early	versus	later	layers	of	networks	should	be	studied	and	compared	to	recorded	neurons	
in	early	and	later	parts	of	the	AC.	
	

Improving	Evaluation	Measures	
A	 major	 challenge	 in	 sound	 source	 separation	 is	 simply	 measuring	 effectively	 whether	
sound	source	separation	has	occurred	(Vincent	et	al.,	2006).	Exactly	how	one	defines	good	
source	separation	will	depend	on	what	purpose	the	source	separation	serves.	Nevertheless,	
SDR	remains	a	standard	measure	used	in	the	field,	and	there	a	number	of	things	we	could	
do	 to	 use	 it	 better.	 To	 better	 evaluate	 the	 SDR	 measure,	 a	 baseline	 SDR	 metric	 can	 be	
calculated	 by	 using	 the	 target	 mixture	 instead	 of	 the	 target	 single	 sound	 in	 the	 SDR	
definition;	 then,	a	 true	positive	sound	separation	would	yield	a	high	SDR	score	when	the	
predicted	 separated	 source	 is	 being	 compared	 to	 its	 target	 single	 sound	but	 a	 low	 score	
when	compared	to	a	mixture	in	which	it	is	a	component	of.	Another	way	to	validate	that	a	
source	separation	 is	genuinely	good	 is	 to	measure	 the	difference	between	 the	G1	and	G2	
predictions	 in	 addition	 to	 measuring	 the	 similarity	 between	 the	 target	 and	 predicted	
source	separation.	This	can	be	done	by	incorporating	a	discriminative	term	to	the	SDR	that	
penalizes	for	similar	predictions	between	G1	and	G2.	Another	important	modification	could	
be	making	separation	measures	more	robust	against	certain	unimportant	distortions	in	the	
estimation	of	the	source,	such	as	differences	between	the	estimate	and	the	source	in	overall	
mean	 or	 gain	 (i.e.	 shift	 and	 scale	 invariance).	 Finally,	 further	 work	 should	 be	 done	 to	
explore	why	examples	that	earn	high	and	low	source	separation	scores.	Ideally,	a	low	score	
should	 correspond	 to	 a	 set	 of	 single	 sources	 that	 are	 hard	 to	 separate	 out	 due	 to	 their	
similarity,	while	a	high	score	should	correspond	to	easily	separable	examples.	Such	work	
would	 not	 only	 test	 the	 evaluation	measure	 but	 also	 help	 inform	model	 development	 in	
helping	to	elucidate	what	qualities	makes	sound	separation	difficult.	
	
In	 addition	 to	 the	 source	 to	 distortion	 ratio	 (SDR),	 a	 few	 other	 measures	 are	 used	 in	
supervised	source	separation	research	that	this	model	should	also	use	for	evaluation:	the	
source	to	interference	ratio	(SIR)	measures	the	residual	interference	from	another	source	
in	 one	 source’s	 separated	 output,	 while	 the	 source	 to	 artifacts	 ratio	 (SAR)	 captures	 the	
artifacts	 introduced	 to	 an	 output	 via	 the	 sound	 separation	 process	 (Vincent	 et	 al.,	 2006)	
The	triplet	of	SDR,	SIR,	and	SAR	measures	are	related	such	that	distortion	is	defined	as	the	
sum	of	interference	left	and	artifacts	introduced	in	source	separation.	In	order	to	measure	
how	 intelligible	 the	 separated	 sounds	 are,	 a	 short	 time	 objective	 intelligibility	 (STOI)	
measure,	which	captures	how	intelligible	denoised	speech	is,	can	also	be	used	(Taal	et	al.,	
2011).	
	
For	 datasets	 like	 mixtures	 of	 speeches	 on	 which	 STOI	 can	 not	 be	 used,	 an	 end-to-end,	
evaluation	 pipeline	 can	 be	 developed	 in	 which	 a	 predicted,	 source	 separated	 output	
cochleagram	is	converted	back	to	a	sound	wave	and	human	listeners	are	asked	to	evaluate	
its	 intelligibility	 and/or	 transcribe	 the	 output	 (Slaney	 et	 al.,	 1994).	 Then,	 not	 only	 can	
human	evaluation	be	used	but	also	psychometric	data	of	humans	evaluating	the	output	can	
also	be	analyzed.	



	 45	

	

Exploring	Alternative	Models	
In	addition	to	the	presented	model,	which	involves	regularizing	population	of	hidden	units,	
alternative	models	should	be	explored	that	fit	within	the	unsupervised	framework	of	using	
subsets	of	hidden	units	to	perform	sound	separation.	In	the	case	of	two	sounds	forming	a	
mixture,	 instead	 of	 regularizing	 the	 hidden	 layer,	 two	 parallel	 output	 layers	 can	 be	
distinctly	regularized;	then,	the	supervised	prediction	output	would	simply	be	the	addition	
of	the	two	output	layers	(Figure	22).	This	output-regularized	model	is	attractive	because	it	
corresponds	well	to	the	similarity	of	the	sum	of	the	power	cochleagrams	of	single	sounds	to	
the	 power	 cochleagram	 of	 its	 mixture.	 For	 log-compressed	 cochleagrams,	 the	 mixture	
cochleagram	corresponds	 to	 the	element-wise	maximum	of	 its	 component	 cochleagrams;	
thus,	the	predicted	output	would	simply	be	the	element-wise	maximum	of	the	two	output	
layers.	

	

	
Figure	22:	Network	Model	with	Distinguished	Output	Unit	Populations	

An	alternative	model	 in	which	 the	hidden	 layer	 is	 connected	 to	 two	parallel	output	unit	populations	𝑂!	
and	𝑂!	(orange	 and	 grey-green	 circles),	 which	 can	 then	 be	 distinctly	 regularized,	 and	 whose	 sum	 (for	
power	 cochlegrams)	 or	 element-wise	maximum	 (for	 log-compressed	 cochleagrams)	 form	 the	 predicted	
output	(light	blue	boxes	represent	the	sum	or	max	function).	

	
Another	 way	 to	 leverage	 cochleagram	 compression	 –	 either	 in	 addition	 to	 or	 instead	 of	
distinctly	 regularizing	 output	 units	 (Figure	 22)	 –	 is	 to	modify	 the	 supervised,	 predictive	
task’s	loss	function	to	explicitly	incorporate	the	way	a	mixture	cochleagram	relates	to	the	
cochleagram	 of	 its	 individual	 components.	 For	 log-compressed	 cochleagrams,	 the	 loss	
function	can	be	modified	to	take	the	maximum	of	two	output	populations	as	its	prediction	
(Equation	17):	
	

𝜃∗ = argmin[
1
𝑁𝑇 ∥ 𝑦!" −max(𝑦!! !" ,𝑦!!(!")) ∥!

!
!

!!!

!

!!!

 + 𝜆 ∥ 𝜃 ∥!]	

Equation	17:	Max-Output	MLE	Predictive	Loss	with	L1	Regularization	

where	 𝑂! 	and	 𝑂! 	correspond	 to	 different	 output	 populations	 whose	 element-wise	
maximum	 forms	 the	 output	 prediction	 (Figure	 22).	 When	 training	 with	 power	
cochleagrams,	a	similar	formulation	based	on	the	summing	effect	of	mixture	cochleagrams	
can	be	used	(Equation	18):	
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𝜃∗ = argmin[
1
𝑁𝑇 ∥ 𝑦!" − (𝑦!! !" +  𝑦!! !" ) ∥!

!
!

!!!

!

!!!

 + 𝜆 ∥ 𝜃 ∥!]	

Equation	18:	Summed-Output	MLE	Predictive	Loss	with	L1	Regularization	

Another	 possible	 network	 is	 one	 that	 predicts	 not	 just	 the	 expected	 future	 but	 that	 also	
parameterizes	 the	 distribution	 over	 possible	 future	 outcomes;	 for	 instance,	 each	 hidden	
unit	 could	 be	 defined	 by	 two	 scalar	 values	 representing	 its	mean	 and	 variance	 (Bishop,	
1994).	Reflecting	the	noise	and	diversity	of	variance	in	real	neurons,	such	a	more	complete	
predictive	network	may	produce	more	robust	source	separation	outputs.	The	regularizing	
hidden	unit	populations	model	can	easily	be	adapted	to	this	probabilistic	network,	which	
would	 allow	 further	 analysis	 on	 the	 difference	 in	 variance	 between	 selective	 and	 non-
selective	hidden	units	to	be	easily	conducted.	
	
Finally,	 while	 the	 presented	 networks	 are	 loosely	 biologically-inspired,	 they	 are	 not	
biologically-plausible	 networks	 because	 backpropagation	 –	 the	 technique	 necessary	 for	
updating	 network	 weights	 –	 requires	 too	 much	 precision	 to	 feasibly	 occur	 in	 the	
mammalian	 brain	 (Crick,	 1989)	 and	 also	 because	 non-spiking	 data	 in	 the	 form	 of	
cochleagrams	 is	 used.	 Nevertheless,	 more	 biologically-plausible	 networks	 have	 been	
developed	(Lillicrap	et	al.,	2014);	 thus,	 the	application	of	 this	dissertation’s	unsupervised	
framework	and	regularization	technique	to	such	models	should	be	explored.	
	

Conclusion	
In	conclusion,	while	the	novel	unsupervised	source	separation	framework	and	hidden	unit	
population	regularization	technique	shows	promising	results,	 further	research4	should	be	
done	 to	 test	 its	 limits	 and	 better	 understand	 how	 the	 regularization	 technique	 and	
resulting	networks	work.	Additionally,	alternative	network	extensions	that	can	utilize	the	
presented	unsupervised	source	separation	framework	should	also	be	explored.		
	
Nevertheless,	 this	dissertation	presents	promising	proof-of-concept	 results	on	 the	power	
and	biological-consistency	of	an	unsupervised	source	separation	framework	that	leverages	
distinctly	regularized	hidden	unit	populations.	
	
	 	

																																																								
4	A	few	of	the	aforementioned	research	directions	will	be	explored,	as	this	project	will	be	continued	beyond	
the	MSc	project	timeline.	
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Supplementary	Figures	
	

	
Figure	23:	Null	Distribution	of	SDR	Probe	Metric	Generated	for	Permutation	Test	(FC)	

The	FC	model’s	mean	SDR	score	of	0.17	was	better	than	all	but	350	of	the	10,000	generated	samples	(p	=	
0.035).	To	generate	a	sample,	the	80	hidden	units	with	output	connections	were	randomly	split	into	two	
groups	that	were	then	used	to	calculate	G1	and	G2	predictions	and	the	SDR	score	for	each	triplet	example;	
the	mean	SDR	score	over	all	triplets	for	a	given	hidden	unit	split	was	used	as	the	sample.	The	green	bars	
signify	the	sampled	scores	that	the	model	did	better	than,	while	the	green	bars	denote	sampled	scores	of	
random	hidden	unit	splits	that	outperform	the	model’s	explicitly	defined	G1	and	G2	in	source	separation.	
The	generated	distribution	has	mean,	𝜇 = −0.19,	and	standard	deviation,	𝜎 = 0.22.		

	
	

	
Figure	24:	Mean	Per-Frequency	Band	Amplitudes	of	Single-Sounds	in	Validation	Set	

For	each	non-mixture	sound	in	the	validation	set,	the	mean	amplitude	was	calculated	for	every	frequency	
band,	and	the	mean	of	the	mean	amplitudes	for	all	non-mixture	sounds	was	plotted	for	every	frequency.	
Due	to	pre-processing	data	normalization,	the	mean	amplitude	across	all	frequencies	is	𝜇 = −0.18,	with	
the	standard	deviation	of	𝜎 = 0.39.	Notably,	activity	is	not	evenly	distributed	across	frequency	bands,	and	
there	appears	to	be	increased	activity	around	100	Hz,	800	Hz,	and	6400	Hz.	
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Figure	25:	Distribution	of	SDR	Example	Probe	Scores	(FC)	

For	 each	 triplet	 example,	 its	 SDR	 score	 was	 calculated,	 and	 all	 scores	 were	 binned	 in	 a	 histogram	
(𝜇 = 0.17, 𝜃 = 1.13).	364	of	the	720	triplet	examples	(50.6%)	yielded	positive	SDR	scores,	which	connotes	
that	 there	 is	 more	 signal	 than	 noise	 in	 the	 optimally	 predicted	 source	 separation;	 although	 the	
distribution	has	a	longer	positive	tail.		

	
	

	
Figure	26:	Null	Distribution	and	Model’s	Distribution	of	SDR	Probe	Metric	(RNN)	

A.	The	RNN	model’s	mean	SDR	score	of	−0.38	was	only	better	than	5039	of	the	1,000	generated	samples	
(𝑝 =  0.50).	Thus,	the	RNN	model’s	source	separation	is	not	significantly	better	than	source	separation	by	
randomly	 assigned	 hidden	 group	 populations.	 To	 generate	 a	 sample,	 the	 80	 hidden	 units	 with	 output	
connections	were	randomly	split	into	two	groups	that	were	then	used	to	calculate	G1	and	G2	predictions	
and	the	SDR	score	for	each	triplet	example;	the	mean	SDR	score	over	all	triplets	for	a	given	hidden	unit	
split	was	used	as	 the	sample.	The	green	bars	 signify	 the	sampled	scores	 that	 the	model	did	better	 than,	
while	 the	 green	 bars	 denote	 sampled	 scores	 of	 random	 hidden	 unit	 splits	 that	 outperform	 the	model’s	
explicitly	defined	G1	and	G2	in	source	separation.	The	generated	distribution	has	mean,	𝜇 = −0.42,	and	
standard	deviation,	𝜎 = 0.27.	This	 sub-figure	can	be	compared	which	contains	 the	 same	plot	generated	
using	the	FC	model	instead.	B.	For	each	validation	triplet	example,	its	SDR	score	using	the	RNN	model	was	
calculated,	 and	 all	 scores	 were	 binned	 in	 a	 histogram	 (𝜇 = −0.38, 𝜃 = 0.78).	 197	 of	 the	 720	 triplet	
examples	(27.3%)	yielded	positive	SDR	scores,	which	connotes	that	there	is	more	signal	than	noise	in	the	
optimally	predicted	source	separation.	These	two	sub-figures	can	be	compared	to	Figure	23	and	Figure	25	
respectively,	which	contain	corresponding	plots	to	A	and	B	generated	using	the	FC	model	instead.	
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Figure	27:	Distribution	of	Aggregate	Selectivity	Scores	by	Model	and	by	Hidden	Unit	Population	

A.	The	aggregate	 selectivity	 scores	of	 all	 hidden	units	 for	 the	 in-depth-analysis	 FC	 (𝜇 = 0.14, 𝜃 = 0.09)	
and	RNN	(𝜇 = 0.13, 𝜃 = 0.04)	models	are	binned	into	histograms.	This	plot	shows	that	the	FC	model	on	
average	has	more	selective	units	 than	the	RNN	model,	which	can	also	be	 inferred	by	examining	the	 top	
three	selective	units	from	each	model	(Figure	21).	20	FC	hidden	units	have	an	aggregate	selectivity	score	
of	0	because	they	are	dead	H	units	with	no	output	connections.	B,	C.	For	the	in-depth-analysis	FC	(B)	and	
RNN	(C)	model,	 the	aggregative	 selectivity	 scores	of	 relevant	hidden	unit	populations	are	binned	 into	a	
histogram.	While	G1	and	G2’s	selectivity	do	not	appear	to	vary,	the	H	population	has	a	longer	tail	of	more	
selective	units	(C).	Taking	B	and	C	together,	these	plots	suggest	that	the	RNN’s	H	population	influences	the	
selectivity	of	the	whole	network	via	its	recurrent	connections	to	G1	and	G2	units,	while	selectivity	occurs	
in	the	FC	model	via	the	increased	overall	selectivity	of	all	G1	and	G2	units.	
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